Skip to main content

Hydrogen from Biomass

  • Living reference work entry
  • First Online:
  • 329 Accesses

Definition of the Subject and Its Importance

Today, there is no disputing that the use of renewable energy has to be increased in order to reduce anthropogenic CO2 emission as well as the dependence on the fossil fuels. Approximately 95 % of the hydrogen produced today comes from carbonaceous raw material, but primarily with a fossil resource as original energy source. Only a fraction of this hydrogen is currently used for energy purposes; the bulk serves as feedstock for manifold purposes, e.g., in the petrochemical industry as well as for food, electronics, and metallurgical processing. However, the share of hydrogen in the energy market is increasing, and hydrogen production will need to keep pace with this growing market [1]. In this sense, this entry summarizes the state of the art of the most important processes, techniques, and research activities in the field of hydrogen production using biomass resources.

Introduction

Hydrogen (H2) is a secondary energy carrier that has to be...

This is a preview of subscription content, log in via an institution.

Abbreviations

Biohydrogen:

Hydrogen derived from biomass.

Biological biohydrogen generation:

Production of hydrogen based on a biological (i.e., biochemical) conversion of biomass.

Biomass:

From a scientific and technical point of view, biomass is defined as material of biological origin excluding material embedded in geological formations and/or transformed to fossil.

Thermochemical biohydrogen generation:

Production of hydrogen based on a heat-induced (i.e., thermochemical) conversion of biomass.

Bibliography

Primary Literature

  1. Milne TA, Elam CC, Evans RJ (2001) H2 from biomass – state of the art and research challenges. A report for the international energy agency agreement on the production and utilization of H2; Task 16, H2 from carbon-containing materials. National Renewable Energy Laboratory, Golden. http://ieahia.org/pdfs/H2_biomass.pdf. Accessed Jul 2010

  2. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11):1185–1193

    Article  CAS  Google Scholar 

  3. Brunstermann R (2010) Entwicklung eines zweistufigen anaeroben Verfahrens zur kontinuierlichen Wasserstoff- und Methanerzeugung aus organischen Abfällen und Abwässer. Forum Siedlungswasserwirtschaft und Abfallwirtschaft, Universität Duisburg-Essen. Shaker, Aachen

    Google Scholar 

  4. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical applications. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  5. Petrovic T, Wagner HJ, Lente A, Widmann R (2005) Photobiologische Wasserstofferzeugung durch Mikroalgen – Beschreibung konkurierender Systeme zur H2-Erzeugung. Stärkung der technologischen Position an den Ruhruniversitäten Teilprojekt 8 ef. Ruhr Förderkennzeichen 856569-T-170

    Google Scholar 

  6. Reith JH, Wijffels RH, Barten H (2003) Bio-methane and bio-hydrogen status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague. ISBN 9090171657

    Google Scholar 

  7. Rechtenbach D (2009) Fermentative Erzeugung von Biowasserstoff aus biogenen Roh- und Reststoffen. Dissertation am Institut für Abfallressourcenwirtschaft, Technische Universität Hamburg-Harburg. In: Stegmann R (ed) Hamburger Berichte 34. Verlag Abfall aktuell, Stuttgart

    Google Scholar 

  8. Krupp M (2007) Bio hydrogen production from organic waste and waste water by dark fermentation – a promising module for renewable energy production. Forum Siedlungswasserwirtschaft und Abfallwirtschaft. Universität Duisburg-Essen, Shaker

    Google Scholar 

  9. Van Ginkel SW, Logan B (2005) Increased hydrogen production with reduced organic loading. Water Res 39:3819–3826

    Article  Google Scholar 

  10. Modigell M, Schumacher M, Claassen PAM, Friedl A, Wukovits W (2006) Entwicklung eines zweistufigen Bioprozesses zur Produktion von Wasserstoff aus Biomasse. GVC IT, Wiesbaden

    Google Scholar 

  11. Zeidan AA, van Niel EWJ (2007) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. WHTC, Montecatini Terme

    Google Scholar 

  12. Hemmes K, de Groot A, den Uil H (2003) Bio-H2 application potential of biomass related hydrogen production technologies to the Dutch energy infrastructure of 2020–2050. Energy Research Center, Petten, ECN-C-03-028

    Google Scholar 

  13. Hyvolution. http://www.fch-ju.eu/sites/default/files/documents/ga2010/pieternel_claassen.pdf

  14. Schlegel HG (1997) Allgemeine Mikrobiologie, 1st edn. Thieme, Stuttgart. ISBN 3-13-444607-3

    Google Scholar 

  15. Hawkes FR, Dinsdale RM, Hawkes DL, Huss I (2002) Sustainable fermentative H2 production: challenges for process optimization. Int J Hydrog Energy 27:1339–1347

    Article  CAS  Google Scholar 

  16. Benemann JR (2004) Biological production of hydrogen-methane mixtures for clean electricity production. In: 15th hydrogen energy conference, Japan

    Google Scholar 

  17. IHS (2005) CEN/TS 14961 solid biofuels – fuel specification and classes. IHS, Englewood Cliffs

    Google Scholar 

  18. Hofbauer H, Veronik G, Fleck T, Rauch R (1997) The FICFB gasification process. In: Bridgwater AV, Boocock D (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic & Professional, Glasgow, pp 1016–1025

    Chapter  Google Scholar 

  19. Thrän D, Seidenberger T, Zeddies J, Offermann R (2010) Global biomass potentials – resources, drivers and scenarios. Energy Sustain Dev 14(3):200–205

    Article  Google Scholar 

  20. Dinjus E, Kolb T, Dahmen N (2009) State of the art of the bioliq BTL process. In: European biomass conference and exhibition 2009, Hamburg

    Google Scholar 

  21. Albertazzi S, Basile F, Brandin J, Einvall J, Hulteberg C, Fornasari G et al (2005) The technical feasibility of biomass gasification for H2 production. Catal Today 106:297–300. doi:10.1016/j.catted.2005.07.160

    Article  CAS  Google Scholar 

  22. McKeough P, Kurkela E (2008) Process evaluations and design studies in the UCG project 2004–2007. VTT Research Notes 2434. http://www.vtt.fi/publications/index.jsp

  23. Harju-Jeanty T, Nuortimo K, Hotta A, Coda-Zabetta E, Palonen J, Kokki S et al (2009) Innovative utilization of renewable energy sources to combat climate change. In: Fourth international bioenergy conference 2009, Jyväskylä

    Google Scholar 

  24. Paisley MA, Overend RP (2002) Verification of the performance of future energy resources’ SilvaGas® biomass gasifier – operating experience in the Vermont gasifier. Paper presented at the Pittsburgh coal conference, 24–26 Sep 2002, Pittsburgh

    Google Scholar 

  25. Paisley M (2007) Advanced biomass gasification for the production of biopower, fuels, and chemicals. AIChE, Salt Lake City

    Google Scholar 

  26. Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H et al (1998) Six years experience with the FICFB-gasification process. In: Twelfth European conference and technology exhibition on biomass for energy, industry and climate protection, Amsterdam

    Google Scholar 

  27. Koppatz S, Pfeifer C, Rauch R, Hofbauer H, Marquard-Moellenstedt T, Specht M et al (2009) H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process Technol 90(7–8):914–921. doi:10.1016/j.fuproc.2009.03.016

    Article  CAS  Google Scholar 

  28. Marquard-Möllenstedt T, Sichler P, Specht M, Michel M, Berger R, Hein K et al (2004) New approach for biomass gasification to H2. In: Proceedings of the second world conference and technology exhibition on biomass for energy, industry and climate protection, Rome, pp 10–14

    Google Scholar 

  29. Soukup G, Pfeifer C, Kreuzeder A, Hofbauer H (2009) In situ CO2 capture in a dual fluidized bed biomass steam gasifier – bed material and fuel variation. Chem Eng Technol 32(3):348–354. doi:10.1002/ceat.200800559

    Article  CAS  Google Scholar 

  30. Pfeifer C, Puchner B, Hofbauer H (2009) Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem Eng Sci 64(23):5073–5083. doi:10.1016/j.ces.2009.08.014

    Article  CAS  Google Scholar 

  31. IEA Hydrogen Implementing Agreement (2006) Prospects for hydrogen from biomass, Annex 16 Subtask B, Final report

    Google Scholar 

Books and Reviews

  • Bienert K (2009) Commercial scale BTL production on the verge of becoming reality. Biomass gasification seminar, Stockholm, 22–23 Oct 2009

    Google Scholar 

  • Crotogino F, Hamelmann R (2007) Wasserstoff-speicherung in Salzkavernen. In: Tagungsband “14. symposium zur nutzung regenerativer energiequellen und wasserstofftechnik”, Stralsund

    Google Scholar 

  • Droste-Franke B, Bert H, Kötter A et al (2009) Brennstoffzellen und virtuelle kraftwerke. In: Gethmann CF (ed) Ethics of science and technology assessment, vol 36. Springer, Berlin, pp 43–131, http://www.springerlink.com/content/vu43p4/

    Google Scholar 

  • DWV (2005) Deutscher Wasserstoff- und Brennstoffzellen-Verband e.V.; Press Release No 5/05: Wasserstoff Spiegel 5/2005

    Google Scholar 

  • DWV (2007) Deutschland schließt wieder zur Weltspitze auf-aber die Konkurrenz schläft nicht. Deutscher Wasserstoff- und Brennstoffzellen-Verband e.V.; Press Release No. 1/07 (22 Feb 2007)

    Google Scholar 

  • Erdle EK (2001) Grundlagen, stand und perspektiven der brennstoffzellen-technik. In: VDI-Gesellschaft Energietechnik (ed) Stationäre brennstoffzellenanlagen: markteinführung Tagungsband. VDI, Düsseldorf, pp 3–14

    Google Scholar 

  • FNR (ed) (2006) Wasserstoff aus biomasse, vol 25. Gülzower Fachgespräche, Gülzow

    Google Scholar 

  • Gao M, Krishnamurthy R (2009) Hydrogen transmission in pipelines and storage in pressurized and cryogenic tanks. In: Gupta RB (ed) Hydrogen fuel – production, transport and storage. CRC-Press, Boca Raton, pp 341–379

    Google Scholar 

  • Hoogwijk M, Faaji A, van Den Broek R, Berndes G, Gielen D, Turkenburg W et al (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133. doi:10.1016/S0961-9534(02)00191-5

    Article  Google Scholar 

  • Jorde F (2006) Laboruntersuchungen zur fermentativen erzeugung von Biowasserstoff in den testsystemen sensomat und ATS unter Einsatz von Rein- und Mischkulturen. Diploma Thesis at the Institute of Waste Resource Management, TUHH, unpublished

    Google Scholar 

  • Jurschik E-M (2007) Optimierung diskontinuierlicher versuche zur fermentativen bio-wasserstoffproduktion, sowie aufbau und inbetriebnahme eines bio-methanreaktors. Diploma Thesis at the Institute of Waste Resource Management TUHH, unpublished

    Google Scholar 

  • Maddy J, Cherryman S, Hawkes FR, Hawkes DL, Dinsdale RM, Guwy AJ, Premier GC, Cole S (2003) Hydrogen 2003. Report number 1, ERDF part-funded project entitled “a sustainable energy supply for Wales: towards the hydrogen economy”. University of Glamorgan, Pontypridd. ISBN 1-840540-90-7

    Google Scholar 

  • Meyer M, Rechtenbach D, Stegmann R (2007) Biological production of H2 from organic raw and waste materials by fermentation with pure and mixed cultures. In: 15th European biomass conference, Berlin, 5 Jul–5 Nov 2007 (Proceedings CD)

    Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  CAS  Google Scholar 

  • Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371

    Article  CAS  Google Scholar 

  • Pehnt M, Höpfner U (2009) Wasserstoff- und stoffspeicher in einem energiesystem mit hohen anteilen erneuerbarer energien: analyse der kurz- und mittelfristigen perspektiven. Kurzgutachten. IFEU -Institut für Energie und Umweltforschung, Heidelberg. http://www.bmu.de/files/pdfs/allgemein/application/pdf/ifeu_kurzstudie_elektromobilitaet_wasserstoff.pdf. Accessed 22 Feb 2010

  • Plath M (2006) Untersuchung und Optimierung der diskontinuierlichen erzeugung von biowasserstoff in dem testsystem ATS unter einsatz von klärschlamm und glukose. Project work at the Institute of Waste Resource Management, TUHH, unpublished

    Google Scholar 

  • Rechtenbach D (2009) Fermentative erzeugung von biowasserstoff aus biogenen roh-und reststoffen. Hamburger Berichte 34, Abfallwirtschaft, T.U.Hamburg- Harburg, Germany, Verlag Abfall aktuell

    Google Scholar 

  • Rechtenbach D, Meyer M, Stegmann R (2006) Fermentative production of bioH2 from organic raw and waste materials. In: Proceedings of the international conference ORBIT 2006 – biological waste management from local to global, 13–15 Sept 2006, Weimar; Kraft E, Bidlingmaier W, de Bertoldi M, Diaz LF, Barth J (Hrsg) Lombego systems & goldwiege. Visualle Projekte, Weimar, pp 869–877. ISBN 3-935974-09-4

    Google Scholar 

  • Reiß T, Hüsing B (1993) Biologische wasserstoffgewinnung – forschungsperspektiven und technikfolgen. Verlag TÜV Rheinland, Köln. ISBN 3-8249-0150-1

    Google Scholar 

  • Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic H2 production processes from biomass. Renew Sustain Energy Rev 14(1):166–182. doi:10.1016/j.rser.2009.08.010

    Article  CAS  Google Scholar 

  • van Ginkel S, Sung S, Lay J-J (2001) BioH2 as a function of pH and substrate concentration. Eviron Sci Technol 35:4726–4730

    Article  CAS  Google Scholar 

  • Zurawski D, Susanto AL, Stegmann R (2004a) Fermentative erzeugung von bio-wasserstoff aus biogenen roh- und reststoffen. In: Proceedings (CD-ROM) des 10. Internationalen kongresses für nachwachsende rohstoffe und pflanzenbiotechnologie NAROSSA, Magdeburg, 7–8 Jun 2004

    Google Scholar 

  • Zurawski D, Susanto AL, Stegmann R (2004b) Sind bioabfälle und energiepflanzen zur biologischen wasserstofferzeugung geeignet? In: Fricke K, Kosak G, Wallmann R, Fischer J, Vogtmann H (eds) Schriftenreihe des ANS, 65. Informationsgesprächs des ANS e.V. “EEG und Emissionshandel – Neue Chancen für Biomassenutzung und Abfallwirtschaft”, 6–7 Dec 2004, Braunschweig, pp 189–200. ISBN 3-935974-06-X

    Google Scholar 

  • Zurawski D, Meyer M, Stegmann R (2005) Fermentative production of bioH2 from biowaste using digested sewage sludge as inoculum. In: Cossu R, Stegmann R (eds) Proceedings of Sardinia 2005 – tenth international waste management and landfill symposium. CISA Environmental Sanitary Engineering Centre, Santa Margerita di Pula, 3–7 Oct 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schmersahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Schmersahl, R., Klemm, M., Brunstermann, R., Widmann, R. (2014). Hydrogen from Biomass. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_318-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_318-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics