Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Hydrogen from Biomass

  • Ralf Schmersahl
  • Marco Klemm
  • Ruth Brunstermann
  • Renatus Widmann
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_318-3

Definition of the Subject and Its Importance

Today, there is no disputing that the use of renewable energy has to be increased in order to reduce anthropogenic CO2 emission as well as the dependence on the fossil fuels. Approximately 95 % of the hydrogen produced today comes from carbonaceous raw material, but primarily with a fossil resource as original energy source. Only a fraction of this hydrogen is currently used for energy purposes; the bulk serves as feedstock for manifold purposes, e.g., in the petrochemical industry as well as for food, electronics, and metallurgical processing. However, the share of hydrogen in the energy market is increasing, and hydrogen production will need to keep pace with this growing market [1]. In this sense, this entry summarizes the state of the art of the most important processes, techniques, and research activities in the field of hydrogen production using biomass resources.

Introduction

Hydrogen (H2) is a secondary energy carrier that has to be...

Keywords

Hydraulic Retention Time Hydrogen Yield Pressure Swing Adsorption Biohydrogen Production Steam Gasification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Milne TA, Elam CC, Evans RJ (2001) H2 from biomass – state of the art and research challenges. A report for the international energy agency agreement on the production and utilization of H2; Task 16, H2 from carbon-containing materials. National Renewable Energy Laboratory, Golden. http://ieahia.org/pdfs/H2_biomass.pdf. Accessed Jul 2010
  2. 2.
    Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11):1185–1193CrossRefGoogle Scholar
  3. 3.
    Brunstermann R (2010) Entwicklung eines zweistufigen anaeroben Verfahrens zur kontinuierlichen Wasserstoff- und Methanerzeugung aus organischen Abfällen und Abwässer. Forum Siedlungswasserwirtschaft und Abfallwirtschaft, Universität Duisburg-Essen. Shaker, AachenGoogle Scholar
  4. 4.
    Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical applications. Int J Hydrog Energy 29(2):173–185CrossRefGoogle Scholar
  5. 5.
    Petrovic T, Wagner HJ, Lente A, Widmann R (2005) Photobiologische Wasserstofferzeugung durch Mikroalgen – Beschreibung konkurierender Systeme zur H2-Erzeugung. Stärkung der technologischen Position an den Ruhruniversitäten Teilprojekt 8 ef. Ruhr Förderkennzeichen 856569-T-170Google Scholar
  6. 6.
    Reith JH, Wijffels RH, Barten H (2003) Bio-methane and bio-hydrogen status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague. ISBN 9090171657Google Scholar
  7. 7.
    Rechtenbach D (2009) Fermentative Erzeugung von Biowasserstoff aus biogenen Roh- und Reststoffen. Dissertation am Institut für Abfallressourcenwirtschaft, Technische Universität Hamburg-Harburg. In: Stegmann R (ed) Hamburger Berichte 34. Verlag Abfall aktuell, StuttgartGoogle Scholar
  8. 8.
    Krupp M (2007) Bio hydrogen production from organic waste and waste water by dark fermentation – a promising module for renewable energy production. Forum Siedlungswasserwirtschaft und Abfallwirtschaft. Universität Duisburg-Essen, ShakerGoogle Scholar
  9. 9.
    Van Ginkel SW, Logan B (2005) Increased hydrogen production with reduced organic loading. Water Res 39:3819–3826CrossRefGoogle Scholar
  10. 10.
    Modigell M, Schumacher M, Claassen PAM, Friedl A, Wukovits W (2006) Entwicklung eines zweistufigen Bioprozesses zur Produktion von Wasserstoff aus Biomasse. GVC IT, WiesbadenGoogle Scholar
  11. 11.
    Zeidan AA, van Niel EWJ (2007) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. WHTC, Montecatini TermeGoogle Scholar
  12. 12.
    Hemmes K, de Groot A, den Uil H (2003) Bio-H2 application potential of biomass related hydrogen production technologies to the Dutch energy infrastructure of 2020–2050. Energy Research Center, Petten, ECN-C-03-028Google Scholar
  13. 13.
  14. 14.
    Schlegel HG (1997) Allgemeine Mikrobiologie, 1st edn. Thieme, Stuttgart. ISBN 3-13-444607-3Google Scholar
  15. 15.
    Hawkes FR, Dinsdale RM, Hawkes DL, Huss I (2002) Sustainable fermentative H2 production: challenges for process optimization. Int J Hydrog Energy 27:1339–1347CrossRefGoogle Scholar
  16. 16.
    Benemann JR (2004) Biological production of hydrogen-methane mixtures for clean electricity production. In: 15th hydrogen energy conference, JapanGoogle Scholar
  17. 17.
    IHS (2005) CEN/TS 14961 solid biofuels – fuel specification and classes. IHS, Englewood CliffsGoogle Scholar
  18. 18.
    Hofbauer H, Veronik G, Fleck T, Rauch R (1997) The FICFB gasification process. In: Bridgwater AV, Boocock D (eds) Developments in thermochemical biomass conversion, vol 2. Blackie Academic & Professional, Glasgow, pp 1016–1025CrossRefGoogle Scholar
  19. 19.
    Thrän D, Seidenberger T, Zeddies J, Offermann R (2010) Global biomass potentials – resources, drivers and scenarios. Energy Sustain Dev 14(3):200–205CrossRefGoogle Scholar
  20. 20.
    Dinjus E, Kolb T, Dahmen N (2009) State of the art of the bioliq BTL process. In: European biomass conference and exhibition 2009, HamburgGoogle Scholar
  21. 21.
    Albertazzi S, Basile F, Brandin J, Einvall J, Hulteberg C, Fornasari G et al (2005) The technical feasibility of biomass gasification for H2 production. Catal Today 106:297–300. doi:10.1016/j.catted.2005.07.160CrossRefGoogle Scholar
  22. 22.
    McKeough P, Kurkela E (2008) Process evaluations and design studies in the UCG project 2004–2007. VTT Research Notes 2434. http://www.vtt.fi/publications/index.jsp
  23. 23.
    Harju-Jeanty T, Nuortimo K, Hotta A, Coda-Zabetta E, Palonen J, Kokki S et al (2009) Innovative utilization of renewable energy sources to combat climate change. In: Fourth international bioenergy conference 2009, JyväskyläGoogle Scholar
  24. 24.
    Paisley MA, Overend RP (2002) Verification of the performance of future energy resources’ SilvaGas® biomass gasifier – operating experience in the Vermont gasifier. Paper presented at the Pittsburgh coal conference, 24–26 Sep 2002, PittsburghGoogle Scholar
  25. 25.
    Paisley M (2007) Advanced biomass gasification for the production of biopower, fuels, and chemicals. AIChE, Salt Lake CityGoogle Scholar
  26. 26.
    Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H et al (1998) Six years experience with the FICFB-gasification process. In: Twelfth European conference and technology exhibition on biomass for energy, industry and climate protection, AmsterdamGoogle Scholar
  27. 27.
    Koppatz S, Pfeifer C, Rauch R, Hofbauer H, Marquard-Moellenstedt T, Specht M et al (2009) H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Process Technol 90(7–8):914–921. doi:10.1016/j.fuproc.2009.03.016CrossRefGoogle Scholar
  28. 28.
    Marquard-Möllenstedt T, Sichler P, Specht M, Michel M, Berger R, Hein K et al (2004) New approach for biomass gasification to H2. In: Proceedings of the second world conference and technology exhibition on biomass for energy, industry and climate protection, Rome, pp 10–14Google Scholar
  29. 29.
    Soukup G, Pfeifer C, Kreuzeder A, Hofbauer H (2009) In situ CO2 capture in a dual fluidized bed biomass steam gasifier – bed material and fuel variation. Chem Eng Technol 32(3):348–354. doi:10.1002/ceat.200800559CrossRefGoogle Scholar
  30. 30.
    Pfeifer C, Puchner B, Hofbauer H (2009) Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem Eng Sci 64(23):5073–5083. doi:10.1016/j.ces.2009.08.014CrossRefGoogle Scholar
  31. 31.
    IEA Hydrogen Implementing Agreement (2006) Prospects for hydrogen from biomass, Annex 16 Subtask B, Final reportGoogle Scholar

Books and Reviews

  1. Bienert K (2009) Commercial scale BTL production on the verge of becoming reality. Biomass gasification seminar, Stockholm, 22–23 Oct 2009Google Scholar
  2. Crotogino F, Hamelmann R (2007) Wasserstoff-speicherung in Salzkavernen. In: Tagungsband “14. symposium zur nutzung regenerativer energiequellen und wasserstofftechnik”, StralsundGoogle Scholar
  3. Droste-Franke B, Bert H, Kötter A et al (2009) Brennstoffzellen und virtuelle kraftwerke. In: Gethmann CF (ed) Ethics of science and technology assessment, vol 36. Springer, Berlin, pp 43–131, http://www.springerlink.com/content/vu43p4/ Google Scholar
  4. DWV (2005) Deutscher Wasserstoff- und Brennstoffzellen-Verband e.V.; Press Release No 5/05: Wasserstoff Spiegel 5/2005Google Scholar
  5. DWV (2007) Deutschland schließt wieder zur Weltspitze auf-aber die Konkurrenz schläft nicht. Deutscher Wasserstoff- und Brennstoffzellen-Verband e.V.; Press Release No. 1/07 (22 Feb 2007)Google Scholar
  6. Erdle EK (2001) Grundlagen, stand und perspektiven der brennstoffzellen-technik. In: VDI-Gesellschaft Energietechnik (ed) Stationäre brennstoffzellenanlagen: markteinführung Tagungsband. VDI, Düsseldorf, pp 3–14Google Scholar
  7. FNR (ed) (2006) Wasserstoff aus biomasse, vol 25. Gülzower Fachgespräche, GülzowGoogle Scholar
  8. Gao M, Krishnamurthy R (2009) Hydrogen transmission in pipelines and storage in pressurized and cryogenic tanks. In: Gupta RB (ed) Hydrogen fuel – production, transport and storage. CRC-Press, Boca Raton, pp 341–379Google Scholar
  9. Hoogwijk M, Faaji A, van Den Broek R, Berndes G, Gielen D, Turkenburg W et al (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133. doi:10.1016/S0961-9534(02)00191-5CrossRefGoogle Scholar
  10. Jorde F (2006) Laboruntersuchungen zur fermentativen erzeugung von Biowasserstoff in den testsystemen sensomat und ATS unter Einsatz von Rein- und Mischkulturen. Diploma Thesis at the Institute of Waste Resource Management, TUHH, unpublishedGoogle Scholar
  11. Jurschik E-M (2007) Optimierung diskontinuierlicher versuche zur fermentativen bio-wasserstoffproduktion, sowie aufbau und inbetriebnahme eines bio-methanreaktors. Diploma Thesis at the Institute of Waste Resource Management TUHH, unpublishedGoogle Scholar
  12. Maddy J, Cherryman S, Hawkes FR, Hawkes DL, Dinsdale RM, Guwy AJ, Premier GC, Cole S (2003) Hydrogen 2003. Report number 1, ERDF part-funded project entitled “a sustainable energy supply for Wales: towards the hydrogen economy”. University of Glamorgan, Pontypridd. ISBN 1-840540-90-7Google Scholar
  13. Meyer M, Rechtenbach D, Stegmann R (2007) Biological production of H2 from organic raw and waste materials by fermentation with pure and mixed cultures. In: 15th European biomass conference, Berlin, 5 Jul–5 Nov 2007 (Proceedings CD)Google Scholar
  14. Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84CrossRefGoogle Scholar
  15. Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371CrossRefGoogle Scholar
  16. Pehnt M, Höpfner U (2009) Wasserstoff- und stoffspeicher in einem energiesystem mit hohen anteilen erneuerbarer energien: analyse der kurz- und mittelfristigen perspektiven. Kurzgutachten. IFEU -Institut für Energie und Umweltforschung, Heidelberg. http://www.bmu.de/files/pdfs/allgemein/application/pdf/ifeu_kurzstudie_elektromobilitaet_wasserstoff.pdf. Accessed 22 Feb 2010
  17. Plath M (2006) Untersuchung und Optimierung der diskontinuierlichen erzeugung von biowasserstoff in dem testsystem ATS unter einsatz von klärschlamm und glukose. Project work at the Institute of Waste Resource Management, TUHH, unpublishedGoogle Scholar
  18. Rechtenbach D (2009) Fermentative erzeugung von biowasserstoff aus biogenen roh-und reststoffen. Hamburger Berichte 34, Abfallwirtschaft, T.U.Hamburg- Harburg, Germany, Verlag Abfall aktuellGoogle Scholar
  19. Rechtenbach D, Meyer M, Stegmann R (2006) Fermentative production of bioH2 from organic raw and waste materials. In: Proceedings of the international conference ORBIT 2006 – biological waste management from local to global, 13–15 Sept 2006, Weimar; Kraft E, Bidlingmaier W, de Bertoldi M, Diaz LF, Barth J (Hrsg) Lombego systems & goldwiege. Visualle Projekte, Weimar, pp 869–877. ISBN 3-935974-09-4Google Scholar
  20. Reiß T, Hüsing B (1993) Biologische wasserstoffgewinnung – forschungsperspektiven und technikfolgen. Verlag TÜV Rheinland, Köln. ISBN 3-8249-0150-1Google Scholar
  21. Tanksale A, Beltramini JN, Lu GM (2010) A review of catalytic H2 production processes from biomass. Renew Sustain Energy Rev 14(1):166–182. doi:10.1016/j.rser.2009.08.010CrossRefGoogle Scholar
  22. van Ginkel S, Sung S, Lay J-J (2001) BioH2 as a function of pH and substrate concentration. Eviron Sci Technol 35:4726–4730CrossRefGoogle Scholar
  23. Zurawski D, Susanto AL, Stegmann R (2004a) Fermentative erzeugung von bio-wasserstoff aus biogenen roh- und reststoffen. In: Proceedings (CD-ROM) des 10. Internationalen kongresses für nachwachsende rohstoffe und pflanzenbiotechnologie NAROSSA, Magdeburg, 7–8 Jun 2004Google Scholar
  24. Zurawski D, Susanto AL, Stegmann R (2004b) Sind bioabfälle und energiepflanzen zur biologischen wasserstofferzeugung geeignet? In: Fricke K, Kosak G, Wallmann R, Fischer J, Vogtmann H (eds) Schriftenreihe des ANS, 65. Informationsgesprächs des ANS e.V. “EEG und Emissionshandel – Neue Chancen für Biomassenutzung und Abfallwirtschaft”, 6–7 Dec 2004, Braunschweig, pp 189–200. ISBN 3-935974-06-XGoogle Scholar
  25. Zurawski D, Meyer M, Stegmann R (2005) Fermentative production of bioH2 from biowaste using digested sewage sludge as inoculum. In: Cossu R, Stegmann R (eds) Proceedings of Sardinia 2005 – tenth international waste management and landfill symposium. CISA Environmental Sanitary Engineering Centre, Santa Margerita di Pula, 3–7 Oct 2005Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ralf Schmersahl
    • 1
  • Marco Klemm
    • 1
  • Ruth Brunstermann
    • 2
  • Renatus Widmann
    • 2
  1. 1.Deutsches BiomasseForschungsZentrum GmbH German Biomass Research Centre (DBFZ)LeipzigGermany
  2. 2.Department of Urban Water and Waste ManagementUniversity of Duisburg-EssenEssenGermany