Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Biomass Energy Heat Provision in Modern Large-Scale Systems

  • Ingwald Obernberger
  • Friedrich Biedermann
  • Thomas Brunner
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_316-3

Glossary

Aerodynamic diameter

The aerodynamic diameter of an irregular particle is the diameter of a spherical particle with a density of 1,000 kg/m3 and the same settling velocity as the irregular particle.

Aerosols

Fine particulate matter emissions (with a diameter <1 μm aerodynamic diameter) formed by gas-to-particle conversion of inorganic vapors released from the fuel, soot, and condensed organic compounds.

Ash

Solid residues of the combustion process resulting from inorganic noncombustible species contained in the fuel.

Bottom ash

Coarse ash fraction discharged from the fuel bed in a combustion process.

Combustion

Exothermic chemical reaction between a fuel and an oxidant, usually air, which produces oxidized products, namely, flue gases and ashes.

Emissions

Gaseous and solid products of a combustion process. Complete combustion results in desired emissions, which are CO2, O2, H2O, and N2, and undesired NOx, SOx, HCl, and particulate matter emissions. CO, organic gaseous...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Livingston WR et al (2016) The status of large scale biomass firing. Ed.: IEA Bioenergy, Task 32. ISBN 978-1-910154-26-7Google Scholar
  2. 2.
    Obernberger I, Hammerschmid A (1999) Dezentrale Biomasse-Kraft-Wärme-Kopplungstechnologien Potential, Einsatzgebiete, technische und wirtschaftliche Bewertung. Schriftenreihe “Thermische Biomassenutzung”, Band 4. dbv-Verlag der Technischen Universität Graz, Graz. ISBN3-7041-0261-XGoogle Scholar
  3. 3.
    Furtner H (2008) Biomasse – Heizungserhebung 2007. NÖ Landes-Landwirtschaftskammer, Abteilung Betriebswirtschaft und Technik (ed), St. PöltenGoogle Scholar
  4. 4.
    Kopetz et al (2008) 34 Prozent Erneuerbare machbar. Broschüre, Österreichischer Biomasse-Verband (ed), WienGoogle Scholar
  5. 5.
    Obernberger I, Thek G (2009) Herstellung und energetische Nutzung von Pellets – Produktionsprozess, Eigenschaften, Feuerungstechnik, Ökologie und Wirtschaftlichkeit. Schriftenreihe “Thermische Biomassenutzung” des Institutes für Partikel- und Prozesstechnik, Technische Universität Graz, Band 5, Graz. ISBN 978-3-9501980-5-8Google Scholar
  6. 6.
    Obernberger I, Thek G (2010) The Pellet Handbook – the production and thermal utilisation of biomass pellets. Published from Earthscan Ltd., London. ISBN 978-1-84407-631-4Google Scholar
  7. 7.
    Herynkova (2007) The perspectives of the European heating market. In: Energiesparverband OÖ (ed) Proceedings of the European Pellets conference 2007, LinzGoogle Scholar
  8. 8.
    AEBIOM (2007) European biomass statistics 2007. European Biomass Association, BelgiumGoogle Scholar
  9. 9.
    Nussbaumer T (2002) Combustion and co-combustion of biomass. In: Proceedings of the 12th European Biomass conference, Amsterdam, vol I, pp 31–37. ISBN 88-900442-5-XGoogle Scholar
  10. 10.
    IEA BIOENERGY TASK 32 (2002) Handbook of biomass combustion and co-firing. In: van LOO S, Koopejan J (ed) pp 171–213. Twente University Press: Twente. ISBN 9036517737Google Scholar
  11. 11.
    Zhang L, Ninomiya Y (2007) Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. In: Proceedings of the Combustion Institute, vol 31, pp. 2847–2854Google Scholar
  12. 12.
    Obernberger I (2014) Strategy for the application of novel characterization methods for biomass fuels: case study of straw. Energy Fuels 28:1041–1052.  https://doi.org/10.1021/ef402249x CrossRefGoogle Scholar
  13. 13.
    Brunner T, Wohlmuther M, Kanzian W, Obernberger I, Pichler W (2015) Additivation guideline – how to utilise inorganic additives as a measure to improve combustion related properties of agricultural biomass fuels. In: Proceedings of the 23rd European Biomass conference and Exhibition, June 2015, Vienna. ISBN 978-88-89407-516 (ISSN 2282-5819), pp 508–518, (paper  https://doi.org/10.5071/23rdEUBCE2015-2AO.8.4), ETA-Florence Renewable Energies (ed), Florence
  14. 14.
    Obernberger I (1997) Nutzung fester Biomasse in Verbrennungsanlagen unter besonderer Berücksichtigung des Verhaltens aschebildender Elemente. Schriftenreihe “Thermische Biomassenutzung”, Band 1. dbv-Verlag der Technischen Universität Graz, Graz. ISBN 3-7041-0241-5Google Scholar
  15. 15.
    Obernberger I (2010) The present state and future development of industrial biomass combustion for heat and power generation (keynote lecture). In: Editione ETS (ed) Proceedings of the ASME-AIT-UIT 2010 conference on thermal and environmental issues in energy systems, May 2010, Sorento. ISBN 978-884672659-9, vol I, pp 9–25, PisaGoogle Scholar
  16. 16.
    Hansen L, Frandsen F, Dam-Johansen K, Soerensen S (1999) Quantification of fusion in ashes from solid fuel combustion. Thermochim Acta 326:105–117CrossRefGoogle Scholar
  17. 17.
    Schmidt A, Zschetzsche A, Hantsch-Linhart W (1994) Analysen von biogenen Brennstoffen. Final report, Bundesministerium für Wissenschaft, Forschung und Kunst (ed), ViennaGoogle Scholar
  18. 18.
    Marutzky R, Seeger K (1999) Energie aus Holz und anderer Biomasse. DRW-Verlag Weinbrenner (ed), Leinfelden-Echtlingen. ISBN 3-87181-347-8Google Scholar
  19. 19.
    Obernberger I, Mandl C, Brandt J (2016) Demonstration of a new ultra-low emission pellet and wood chip small-scale boiler technology (plenary lecture). In: Proceedings of the 24th European Biomass Conference and Exhibition, June 2016, Amsterdam. ISBN 978-88-89407-165, pp 367–374 (paper  https://doi.org/10.5071/24thEUBCE2016-2BP.2.1), ETA-Florence Renewable Energies (ed), Florence
  20. 20.
  21. 21.
    Leckner B, Karlsson M (1993) Gaseous emissions from circulating fluidised bed combustion of wood. Biomass and bioenergy, vol 4, no 5, pp 379–389 (1993)Google Scholar
  22. 22.
    Westermark M (1994) Termisk kadmiumrening av träbränsleaskor. report, Vattenvall Utveckling AB (ed), VällingbyGoogle Scholar
  23. 23.
    Obernberger I, Brunner T, Mandl C, Kerschbaum M, Svetlik T (2017) Strategies and technologies towards zero emission biomass combustion by primary measures. In: Energy Procedia (2017)Google Scholar
  24. 24.
    Nussbaumer T (1999) Stromerzeugung aus biogenen Brennstoffen. Brennstoff Wärme Kraft 51(7/8):51–55Google Scholar
  25. 25.
    Nussbaumer T, Neuenschwander P, Hasler P, Jenni A, Bühler R (1998) Technical and economic assessment of the Technologies for the Conversion of wood to heat, electricity and synthetic fuels. In: Proceedings of the 10th European bioenergy conference, June 1998, Würzburg, C.A.R.M.E.N. (ed), Rimpar, pp 1142–1145Google Scholar
  26. 26.
    Dietler R (1994) Wärme-Kraft-Kopplung mittels Dampfprozess bei Holzfeuerungen. In: Proceedings of the 3rd Holzenergie-Symposium, Oct 21, 1994, ETH Zürich, Bundesamt für Energie (ed), Bern, pp 251–274Google Scholar
  27. 27.
    Eder F (1997) Einsatz und Marktchancen von Stirling- und Heissgasmotoren. Brennstoff Wärme Kraft 49(1/2):42–45Google Scholar
  28. 28.
    Carlsen H (1999) Status and prospects of small-scale power production based on Stirling engines – Danish experiences. In: Proceedings of Power Production from Biomass III, 14–15 September, 1998, Espoo, VTT (ed), Espoo, pp 249–264Google Scholar
  29. 29.
    KKK-KÜHNLE (1998) Company brochure Kopp & Kausch AG (ed). Frankenthal/PfalzGoogle Scholar
  30. 30.
    Bini R, Manciana E (1996) Organic rankine cycle turbogenerators for combined heat and power production from biomass. In: Proceedings of the 3rd Munich Discussion Meeting 1996, ZAE Bayern (ed), MunichGoogle Scholar
  31. 31.
    Turboden SRL (1998) Company brochure. BresciaGoogle Scholar
  32. 32.
    Scheidegger K, Gaia M, Bini R, Bertuzzi P (2000) Small scale biomass powered CHP plants featuring thermal oil boiler and organic rankine cycle turbogenerators. In: Proceeding of the 1st world conference and exhibitions on biomass for energy and industry, June 2000, SevillaGoogle Scholar
  33. 33.
    Obernberger I, Thonhofer P, Reisenhofer E (2002) Description and evaluation of the new 1,000 kWel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz. In: Euroheat & Power, volume 10/2002, pp 18–25Google Scholar
  34. 34.
    Obernberger I, Hammerschmid A, Forstinger M (2015) Techno-economic evaluation of selected decentralised CHP applications based on biomass combustion with steam turbine and ORC processes. Report produced as IEA Bioenergy Task 32 project; Ed.: IEA Bioenergy, Task 32. http://task32.ieabioenergy.com
  35. 35.
    Spitzer J, Podesser E, Jungmeier G (1997) Wärme-Kraft-Kopplung (Stirlingmotor, Dampfmotor, ORC-Prozesse). Thermische Biomassenutzung – Technik und Realisierung. VDI report 1319, VDI Verlag GmbH (ed), DüsseldorfGoogle Scholar
  36. 36.
    Carlsen H, Bovin J (2000) Biofuel Stirling Engines for CHP. In: Proceedings of the 1st world conference on biomass for energy and industry, June 2000, Sevilla. Volume I, James&James Ltd. (ed), London, pp 933–936. ISBN 1-902916-15-8Google Scholar
  37. 37.
  38. 38.
    Senkel N, Siemers W, (2011) A new approach for combining solid biomass combustion and stirling technology. In: Proceedings of the 19th European Biomass Conference & Exhibition, June 2011, Berlin, pp 1305–1313, ETA-Renewable Energies (ed), Italy. ISBN 978-88-89407-55-7Google Scholar
  39. 39.
    STEWEAG (1997) Forschungsprojekt TINA Thermodynamisch Innovative Nichtnukleare Anlage. Report, Steweag (ed), GrazGoogle Scholar
  40. 40.
    de Ruyck J, Allard G, Maniatis K (1996) An externally fired evaporative gas turbine cycle for small scale biomass gasification. In: Proceedings of developments in thermochemical biomass conversion, May 1996, Banff, vol. 2, Blackie Academic and Professional (ed), London. ISBN 0-7514-0350-4Google Scholar
  41. 41.
    Thek G, Brunner T, Obernberger I (2010) Externally with biomass and internally with natural gas fired micro gas turbine – system, furnace and high temperature heat exchanger design as well as performance data from first test runs. In: Proceedings of the 18th European Biomass Conference and Exhibition, May 2010, Lyon, pp 1891–1899, ETA-Florence Renewable Energies (ed), Lyon. ISBN 978-88-89407-56-5Google Scholar
  42. 42.
    Riccio G, Spadi A, Chiaramonti D, Martelli F, Thek G, Brunner T, Obernberger I (2011) Development and test results of an externally biomass-fired micro gas turbine CHP plant. In: Proceedings of the Central European Biomass Conference 2011, Jan 2011, Graz, Austrian Biomass Association (ed), ViennaGoogle Scholar
  43. 43.
    Riccio G, Chiaramonti D (2009) Design and simulation of a small polygeneration plant cofiring biomass and natural gas in a dual combustion micro gas turbine (BIO_MGT). Biomass Bioenergy 33:1520–1531. Elsevier Ltd., Oxford. ISSN 0961-9534CrossRefGoogle Scholar
  44. 44.
    Hammerschmid A, Obernberger I (2000) Biomasse-Kraft-Wärme-Kopplungen auf Basis des ORC-Prozesses am Beispiel des realisierten EU-THERMIE-Projektes in Admont (Österreich). In: Tagungsband zum 9. Symposium “Festbrennstoffe und umweltfreundliche Energietechnik”, Kloster Banz, Deutschland, ISBN 3-934681-09-3, OTTI Energie-Kolleg (ed), Regensburg, pp 48–58Google Scholar
  45. 45.
    Brunner T, Obernberger I (1996) New technologies for NOx reduction and ash utilization in biomass combustion plants – JOULE THERMIE 95 Demonstration Project. In: Proceedings of the 9th European Bioenergy conference, vol 2, Elsevier Science Ltd (ed), Oxford. ISBN 0 08 0428 495Google Scholar
  46. 46.
    Hesch T, Biedermann F, Brunner T, Obernberger I (2011) Reduction of nox and pm1 emissions from automated boilers by advanced air staging. In: Proceedings of the 19th European Biomass Conference & Exhibition, June 2011, Berlin, pp 874–879, ETA-Renewable Energies (ed), Italy. ISBN 978-88-89407-55-7Google Scholar
  47. 47.
    Nussbaumer T (1996) Primary and secondary measures for the reduction of nitric oxide emissions from biomass combustion. In: Proceedings of the international conference “Developments in Thermochemical Biomass Conversion”, May 1996, Banff, vol 2. Blackie Academic and Professional (ed), London. ISBN 0 7514 0350 4Google Scholar
  48. 48.
    De Nevers N (1995) Air pollution control engineering. McGraw-Hill, New YorkGoogle Scholar
  49. 49.
    Brunner T (2006) Aerosols and coarse fly ashes in fixed-bed biomass combustion. PhD-thesis, book series “Thermal Biomass Utilization”, volume 6, Graz University of Technology. ISBN 3-9501980-3-2Google Scholar
  50. 50.
    Beck J, Brandenstein J, Unterberger S, Hein KRG (2004) Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts. Appl Catal B 49:15–25CrossRefGoogle Scholar
  51. 51.
    Walter B, Mostbauer P, Kraigl B (2016) Biomasse-Aschenströme in Österreich. Report REP-0561, Umweltbundesamt GmbH, Wien. ISBN 978-3-99004-373-8Google Scholar
  52. 52.
    Jöller M, Brunner T, Obernberger I (2005) Modelling of aerosol formation. In: Proceedings of the international seminar “Aerosols in Biomass Combustion”, March 2005, Graz, book series “Thermal Biomass Utilization”, volume 6, pp.79–106, Graz. ISBN 3-9501980-2-4Google Scholar
  53. 53.
    Cheremisinoff PN (1993) Air pollution control and design for industry. Marcel Dekker, New YorkGoogle Scholar
  54. 54.
    Evic N, Brunner T, Obernberger I (2012) Prediction of biomass ash melting behaviour – correlation between the data obtained from thermodynamic equilibrium calculations and simultaneous thermal analysis (STA). In: Proceedings of the 20th European Biomass Conference & Exhibition, June 2012, Milano, pp 807–813. ETA-Renewable Energies (ed), Italy. ISBN 978-88-89407-54-7Google Scholar
  55. 55.
    Obernberger I, Brunner T, Frandsen F, Skifvars B, Backman R, Brouwers JJH, van Kemenade E, Müller M, Steurer C, Becher U (2003) Aerosols in fixed-bed biomass combustion – formation, growth, chemical composition, deposition, precipitation and separation from flue gas. Final report, EU project No. NNE5-1999-00114, European Commission DG Research (ed), BrusselsGoogle Scholar
  56. 56.
    Riedl R, Obernberger I (1997) Corrosion and fouling in boilers of biomass combustion plants – active oxidation in boiler tubes. In: Proceedings of the 4th European conference on industrial furnaces and boilers, Apr 1997, Porto, INFUB (ed), Rio TintoGoogle Scholar
  57. 57.
    Retschitzegger S, Brunner T, Waldmann B, Obernberger I (2013) Assessment of online corrosion measurements in combination with fuel analysis, aerosol and deposit measurements in a biomass CHP plant. Energy Fuels 27(10):5670–5683CrossRefGoogle Scholar
  58. 58.
    Retschitzegger S, Gruber T, Brunner T, Obernberger I (2015) Short term online corrosion measurements in biomass fired boilers. Part 1: application of a newly developed mass loss probe. Fuel Proc Technol 137:148–156CrossRefGoogle Scholar
  59. 59.
    Retschitzegger S, Gruber T, Brunner T, Obernberger I (2016) Short term online corrosion measurements in biomass fired boilers. Part 2: investigation of the corrosion behavior of three selected superheater steels for two biomass fuels. Fuel Proc Technol 142:59–70.  https://doi.org/10.1016/j.fuproc.2015.09.021 CrossRefGoogle Scholar
  60. 60.
    Brunner T, Reisenhofer E, Obernberger I, Kanzian W, Forstinger M, Vallant R (2017) Low-temperature corrosion in biomass-fired combustion plants – online measurement of corrosion rates, acid dew points and deliquescence corrosion. In: Proceedings of the 25th European Biomass Conference and Exhibition, June 2017, Stockholm. ETA-Florence Renewable Energies (ed), FlorenceGoogle Scholar
  61. 61.
    Herzog T, Müller W, Spiegel W, Brell J, Molitor D, Schneider D (2012) Corrosion caused by dew point and deliquescent salts in the boiler and flue gas cleaning. In: Thomé-Kozmiensky KJ, Thiel S (eds) Waste management. Recycling and recovery, vol 3. TK Verlag, Neuruppin, pp 343–358Google Scholar
  62. 62.
    Klaue B (2001) Charakterisierung und Quantifi-zierung kristalliner Phasen in urbanen Aerosolen unter besonderer Berücksichtigung der Hygroskopizität sekundärer Ammoniumsalze. Dissertation, Universität Hamburg, HamburgGoogle Scholar
  63. 63.
    Retschitzegger S, Brunner T, Obernberger I (2015) Low temperature corrosion in biomass boilers fired with chemically untreated wood chips and bark. Energy Fuels 29:3913–3921CrossRefGoogle Scholar
  64. 64.
    Waldmann B (2007) Korrosion in Anlagen zur thermischen Abfallverwertung – elektrochemische Korrosionserfassung und Modellbildung. PhD thesis, University AugsburgGoogle Scholar
  65. 65.
    Haider F, Horn S, Waldmann B, Warnecke R (2007) Korrosionssonden-Ergebnisse zu Messungen in verschiedenen Anlagen. In: VDI-Wissensforum (eds) Beläge und Korrosion, Verfahrenstechnik und Konstruktion in Großfeuerungsanlagen – Seminar am 12.-13. Juni 2007 in Frankfurt/Main. VDI-Verlag, DüsseldorfGoogle Scholar
  66. 66.
    van Kessel L (2003) Stochastic disturbances and dynamics of thermal processes. PhD thesis, Eindhoven Technical University, EindhovenGoogle Scholar
  67. 67.
    Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I (2007) Modellierung der Druck- und Volumenstrom-verhältnisse in einer Biomasse-Feuerung. Automatisierungstechnik 55(8):404–410CrossRefGoogle Scholar
  68. 68.
    Bauer R, Gölles M, Brunner T, Dourdoumas N, Obernberger I (2008) Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass Bioenerg 34(4):417–427. 2010CrossRefGoogle Scholar
  69. 69.
    Gölles M (2008) Development of mathematical models of a biomass grate furnace as a basis for model based control strategies. PhD thesis, Graz University of TechnologyGoogle Scholar
  70. 70.
    Zemann C, Heinreichsberger O, Gölles M, Brunner T, Dordoumas N, Obernberger I (2014) Application of a model based control strategy at a fixed bed biomass district heating plant. In: Proceedings of the 22nd European Biomass Conference and Exhibition, June 2014, Hamburg. ISBN 978-88-89407-52-3 (ISSN 2282-5819), pp 1699–1705, (paper  https://doi.org/10.5071/22ndEUBCE2014-IBV.4.18), ETA-Florence Renewable Energies (ed), Florence

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Ingwald Obernberger
    • 1
  • Friedrich Biedermann
    • 1
  • Thomas Brunner
    • 1
  1. 1.BIOS BIOENERGIESYSTEME GmbHGrazAustria