Skip to main content

Biomass Energy Heat Provision for Cooking and Heating in Developing Countries

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

BC:

Black Carbon, a product of incomplete combustion with a high radiative forcing value in the atmosphere

Biomass:

Biomass is defined as any plant matter used directly as fuel or converted into other forms before combustion. Included are wood and energy crops; forest and crop residues such as tops and branches and cereal straws; process residues such as sawdust, sugarcane bagasse, pulp, and paper black liquor; as well as animal materials/wastes and the organic fraction of urban and municipal waste

DALY:

Disability-Adjusted Life Years or DALYs, a measure combining years of life lost due to disability and death

GACC:

Global Alliance for Clean Cookstoves (cleancookstoves.org/home/)

GIS:

Geographic Information System which embodies a spatial database and mapping capability

GWP:

Global Warming Potential, a measure in carbon dioxide equivalent terms of the climate change potential of different compounds in the atmosphere

Higher Heating Value (HHV) or Gross Calorific Value (GCV):
...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lepeleire D, Prasad KK, Verhaart P, Visser P (1981) A woodstove compendium. Technische Hogeschool Eindhoven, Eindhoven. https://pure.tue.nl/ws/files/4440076/175114.pdf. Accessed 21 July 2017

  2. IIT, Detailed Project Report on the Setting up of National Institute for Rural Industrialization, Delhi, 2001

    Google Scholar 

  3. Global Alliance For Clean Cookstoves (n.d.). http://cleancookstoves.org/. Accessed 21 July 2017

  4. Eckholm EP, Foley G, Barnard G, Timberlake L (1984) Fuelwood: the energy crisis that won’t go away. International Institute for Environment and Development, London. https://portals.iucn.org/library/node/21118. Accessed 21 July 2017

  5. International Energy Agency, Energy for Cooking in Developing Countries, World Energy Outlook 2006 (2006). https://doi.org/10.1787/weo-2006-16-en

  6. Wanstall L (2015) Residential heating with wood and coal: health impacts and policy options in Europe and North America, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0009/271836/ResidentialHeatingWoodCoalHealthImpacts.pdf. Accessed 17 July 2017

  7. Mytting L (2015) Norwegian wood: chopping, stacking and drying wood the Scandinavian way. MacLehose Press, Quercus, London

    Google Scholar 

  8. Sutar KB, Kohli S, Ravi MR, Ray A (2015) Biomass cookstoves: a review of technical aspects. Renew Sust Energ Rev 41:1128–1166. https://doi.org/10.1016/j.rser.2014.09.003

    Article  Google Scholar 

  9. Jetter JJ, Kariher P (2009) Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy 33:294–305. https://doi.org/10.1016/j.biombioe.2008.05.014

    Article  CAS  Google Scholar 

  10. Kshirsagar MP, Kalamkar VR (2014) A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renew Sust Energ Rev 30:580–603. https://doi.org/10.1016/j.rser.2013.10.039

    Article  Google Scholar 

  11. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Prüss-Ustün A et al (2013) Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect 121:784–790. https://doi.org/10.1289/ehp.1205987

    Article  Google Scholar 

  12. Masera OR, Saatkamp BD, Kammen DM (2000) From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev 28:2083–2103. https://doi.org/10.1016/S0305-750X(00)00076-0

    Article  Google Scholar 

  13. Ruiz-Mercado I, Masera O (2015) Patterns of stove use in the context of fuel–device stacking: rationale and implications. EcoHealth 12:42–56. https://doi.org/10.1007/s10393-015-1009-4

    Article  Google Scholar 

  14. Patronene J, Kaura E, Torvestad C (2017) Nordic heating and cooling: Nordin approach to EU’s heating and cooling strategy, Copenhagen. https://doi.org/10.6027/TN2017-532

  15. McDade S (2004) Fueling development: the role of LPG in poverty reduction and growth. Energy Sustain Dev 8:74–81. https://doi.org/10.1016/S0973-0826(08)60469-X

    Article  Google Scholar 

  16. Eaton SB (2006) The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc 65:1–6. https://doi.org/10.1079/PNS2005471

    Article  CAS  Google Scholar 

  17. Carmody RN, Wrangham RW (2009) The energetic significance of cooking. J Hum Evol 57:379–391. https://doi.org/10.1016/j.jhevol.2009.02.011

    Article  Google Scholar 

  18. Bressani R, Chon C (1996) Effects of altitude above sea level on the cooking time and nutritional value of common beans. Plant Foods Hum Nutr 49:53–61. https://doi.org/10.1007/BF01092522

    Article  CAS  Google Scholar 

  19. Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Chang 115:365–378. https://doi.org/10.1007/s10584-012-0460-2

    Article  Google Scholar 

  20. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966. https://doi.org/10.1029/2000GB001382

    Article  CAS  Google Scholar 

  21. Harrison ME, Page SE, Limin SH (2009) The global impact of Indonesian forest fires. Biologist 56:156–163. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.709.6831&rep=rep1&type=pdf. Accessed 21 July 2017

    Google Scholar 

  22. Drigo R, Trossero M, Ghilardi A, Masero O, WISDOM Case Studies Global Map, Woodfuel Integr. Supply/Demand Overv. Mapp (2017) http://www.wisdomprojects.net/global/cs.asp. Accessed 21 July 2017

  23. an A.H.P. of the BOSTID, Advisory Committee on Technology Innovation, B. on S. and T. for I. Development, Office of International Affairs (1983) Firewood crops: shrub and tree species for energy production, vol 2. National Academies Press, Washington, DC. http://dx.doi.org/10.17226/19480

    Google Scholar 

  24. Mead DJ (2005) Forests for energy and the role of planted trees. CRC Crit Rev Plant Sci 24:407–421. https://doi.org/10.1080/07352680500316391

    Article  Google Scholar 

  25. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J et al (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Clim Chang. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf. Accessed 21 July 2017

  26. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  27. Heringa MF, DeCarlo PF, Chirico R, Lauber A, Doberer A, Good J et al (2012) Time-resolved characterization of primary emissions from residential wood combustion appliances. Environ Sci Technol 46:11418–11425. https://doi.org/10.1021/es301654w

    Article  CAS  Google Scholar 

  28. Bizzo WA, De Calan B, Myers R, Hannecart T (2004) Safety issues for clean liquid and gaseous fuels for cooking in the scope of sustainable development. Energy Sustain Dev III:60–67. http://www.unitoops.com/safetyissues.pdf. Accessed 21 July 2017

    Article  Google Scholar 

  29. Thompson E (1979) Fire array and apparatus. 4271817 A. http://www.google.tl/patents/US4271817. Accessed 21 July 2017

  30. Owen M, Stone D (2002) UNHCR – handbook of experiences in energy conservation and alternative fuels: cooking options in refugee situations, Geneva. http://www.unhcr.org/protection/environment/406c368f2/handbook-experiences-energy-conservation-alternative-fuels-cooking-options.html. Accessed 21 July 2017

  31. Rehder J (2006) The mastery and uses of fie in antiquity. McGill-Queen’s University Press, Montreal

    Google Scholar 

  32. Bryan M, Still D, Scott P, Hoffa G, Ogle D, Bails R et al (2006) Design principles for wood burning cook stoves (EPA-402-k-05-004), Washington, DC. http://bioenergylists.org/stovesdoc/Pcia/DesignPrinciples for Wood Burning Cookstoves.pdf. Accessed 24 July 2017

  33. Amrose S, Kisch GT, Kirubi C, Woo J, Gadgil A (2008) Development and testing of the Berkeley Darfur Stove, Berkeley. http://gadgillab.berkeley.edu/wp-content/uploads/2013/08/LBNL116E_DevTestBDS_2008.pdf. Accessed 22 July 2017

  34. Melamed Y, Kislev ME, Geffen E, Lev-Yadun S, Goren-Inbar N (2016) The plant component of an Acheulian diet at Gesher Benot Ya’aqov, Israel. Proc Natl Acad Sci USA 113:14674–14679. https://doi.org/10.1073/pnas.1607872113

    Article  CAS  Google Scholar 

  35. Taylor RE (2000) The contribution of radiocarbon dating to new world archaeology. Radiocarbon 42:1–21. https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/3850/3275. Accessed 22 July 2017

    Article  CAS  Google Scholar 

  36. Bussman PJT (1988) Woodstoves: theory and applications in developing countries. Technische Universiteit Eindhoven, Eindhoven. https://doi.org/10.6100/IR291952

    Google Scholar 

  37. Baldwin SF (1987) Biomass stoves: engineering, design, development, and dissemination. VITA (Volunteers in Technical Assistance, Arlington. http://blog.newdawnengineering.com/website/library/Papers+Articles/Biomass Stoves, Engineering Design, Development and Dissemination, Samuel Baldwin 1987.pdf. Accessed 22 July 2017

  38. Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T, DeCarlo P et al (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46:10827–10834. https://doi.org/10.1021/es301693f

    Article  CAS  Google Scholar 

  39. MacCarty N, Still D, Ogle D (2010) Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain Dev 14:161–171. https://doi.org/10.1016/j.esd.2010.06.002

    Article  Google Scholar 

  40. WHO | Indoor air quality guidelines: household fuel combustion, World Health Organization, Geneva, 2014. http://www.who.int/indoorair/publications/household-fuel-combustion/en/. Accessed 16 July 2017

  41. Lombardi F, Riva F, Bonamini G, Barbieri J, Colombo E (2017) Laboratory protocols for testing of Improved Cooking Stoves (ICSs): a review of state-of-the-art and further developments. Biomass Bioenergy 98:321–335. https://doi.org/10.1016/j.biombioe.2017.02.005

    Article  Google Scholar 

  42. Smith KR, Pennise D, Khummongkol P, Ritgeen K, Zhang J, Panyathanya W et al (1999) Greenhouse gases from small-scale combustion devices in developing countries, charcoal-making kilns in Thailand, Washington, DC. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63468&subject=AirResearch&showCriteria=0&searchAll=AirandNitrogen&actType=Product&TIMSType=PUBLISHED+REPORT&sortBy=revisionDate. Accessed 22 July 2017

  43. Antal MJ, Mok WSL, Varhegyi G, Szekely T (1990) Review of methods for improving the yield of charcoal from biomass. Energy Fuels 4:221–225. https://doi.org/10.1021/ef00021a001. Accessed 22 July 2017

    Article  CAS  Google Scholar 

  44. Antal MJJ (1993) Process for charcoal production from woody and herbaceous plant material. US5435983. http://www.google.com/patents/US5435983. Accessed 22 July 2017

  45. Taylor ET, Wirmvem MJ, Sawyer VH, Nakai S (2015) Characterization and determination of PM2.5 bound polycyclic aromatic hydrocarbons (PAHS) in indoor and outdoor air in western Sierra Leone. J Environ Anal Toxicol 5. https://doi.org/10.4172/2161–0525.1000307

  46. Smith KR (1987) Biofuels, air pollution, and health: a global review. Plenum Press, New York

    Google Scholar 

  47. Murray C, Lopez A (eds) (2002) WHO | The world health report 2002 – reducing risks, promoting healthy life. World Health Organization, Geneva. http://www.who.int/whr/2002/en/. Accessed 22 July 2017

    Google Scholar 

  48. Edwards R, Princevac M, Weltman R, Ghasemian M, Arora NK, Bond T (2017) Modeling emission rates and exposures from outdoor cooking. Atmos Environ 164:50–60. https://doi.org/10.1016/j.atmosenv.2017.05.029

    Article  CAS  Google Scholar 

  49. Bodin S, Levander T (2014) Controlling emissions from wood burning legislation and regulations in Nordic countries to control emissions from residential wood burning an examination of past experience, Nordic Council of Ministers

    Google Scholar 

  50. Mortimer K, Ndamala CB, Naunje AW, Malava J, Katundu C, Weston W et al (2017) A cleaner burning biomass-fueled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. Lancet 389:167–175. https://doi.org/10.1016/S0140-6736(16)32507-7

    Article  Google Scholar 

  51. Batterbury S, Warren A (2001) The African Sahel 25 years after the great drought: assessing progress and moving towards new agendas and approaches. Glob Environ Chang 11:1–8. https://doi.org/10.1016/S0959-3780(00)00040-6

    Article  Google Scholar 

  52. Johnson M, Edwards R, Ghilardi A, Berrueta V, Gillen D, Frenk CA et al (2009) Quantification of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43:2456–2462. https://doi.org/10.1021/es801564u

    Article  CAS  Google Scholar 

  53. Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev 14:63–72. https://doi.org/10.1016/j.esd.2010.04.005

    Article  CAS  Google Scholar 

  54. Edwards RD, Smith K, Zhang J, Ma Y (2003) Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China. Chemosphere 50:201–215. https://doi.org/10.1016/S0045-6535(02)00478-2

    Article  CAS  Google Scholar 

  55. IRG (2010) Black carbon emissions in Asia: sources, impacts, and abatement opportunities. Washington, DC. http://www.pciaonline.org/files/BlackCarbonEmissionsinAsia.pdf. Accessed 22 July 2017

  56. Socci A, Tibbs Y, Bandemehr A (2012) Reducing black carbon emissions in South Asia: low cost opportunities, Washington, DC. https://nepis.epa.gov/Exe/ZyNET.exe/P100EF3D.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery. Accessed 22 July 2017

  57. Bailis R, Drigo R, Ghilardi A, Masera O (2015) The carbon footprint of traditional woodfuels. Nat Clim Chang 5:266–272. https://doi.org/10.1038/nclimate2491

    Article  CAS  Google Scholar 

  58. Boden T, Marland G, Andres R (2017) Global, regional, and national fossil-fuel CO2 emissions, Oak Ridge. doi:https://doi.org/10.3334/CDIAC/00001_V2017

  59. Stanistreet D, Puzzolo E, Bruce N, Pope D, Rehfuess E (2014) Factors influencing household uptake of improved solid fuel stoves in low- and middle-income countries: a qualitative systematic review. Int J Environ Res Public Health 11:8228–8250. https://doi.org/10.3390/ijerph110808228

    Article  Google Scholar 

  60. Puzzolo E, Pope D, Stanistreet D, Rehfuess EA, Bruce NG (2016) Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use. Environ Res 146:218–234. https://doi.org/10.1016/j.envres.2016.01.002

    Article  CAS  Google Scholar 

  61. Arthur WB (2009) The nature of technology: what it is and how it evolves. Free Press, New York

    Google Scholar 

  62. Slaski X, Thurber MC (2009) Three key obstacles to cookstove adoption (and how to overcome them). Policy brief. In: Rai K, McDonald J (eds) Cookstoves and markets: experiences, successes and opportunities. GVEP International, London, pp 37–40. https://pesd.fsi.stanford.edu/publications/three_key_obstacles_to_cookstove_adoption_and_how_to_overcome_them. Accessed 22 July 2017

    Google Scholar 

  63. Collier P (2009) The bottom billion: why the poorest countries are failing and what can be done about it. Oxford University Press, Oxford

    Google Scholar 

  64. Ezzati M, Baumgartner JC (2017) Household energy and health: where next for research and practice? Lancet 389:130–132. https://doi.org/10.1016/S0140-6736(16)32506-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph P. Overend .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Overend, R.P. (2018). Biomass Energy Heat Provision for Cooking and Heating in Developing Countries. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_315-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_315-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics