Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Biomass Energy Heat Provision for Cooking and Heating in Developing Countries

  • Ralph P. OverendEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_315-3



Black Carbon, a product of incomplete combustion with a high radiative forcing value in the atmosphere


Biomass is defined as any plant matter used directly as fuel or converted into other forms before combustion. Included are wood and energy crops; forest and crop residues such as tops and branches and cereal straws; process residues such as sawdust, sugarcane bagasse, pulp, and paper black liquor; as well as animal materials/wastes and the organic fraction of urban and municipal waste


Disability-Adjusted Life Years or DALYs, a measure combining years of life lost due to disability and death


Global Alliance for Clean Cookstoves (cleancookstoves.org/home/)


Geographic Information System which embodies a spatial database and mapping capability


Global Warming Potential, a measure in carbon dioxide equivalent terms of the climate change potential of different compounds in the atmosphere

Higher Heating Value (HHV) or Gross Calorific Value (GCV)


This is a preview of subscription content, log in to check access.


  1. 1.
    Lepeleire D, Prasad KK, Verhaart P, Visser P (1981) A woodstove compendium. Technische Hogeschool Eindhoven, Eindhoven. https://pure.tue.nl/ws/files/4440076/175114.pdf. Accessed 21 July 2017
  2. 2.
    IIT, Detailed Project Report on the Setting up of National Institute for Rural Industrialization, Delhi, 2001Google Scholar
  3. 3.
    Global Alliance For Clean Cookstoves (n.d.). http://cleancookstoves.org/. Accessed 21 July 2017
  4. 4.
    Eckholm EP, Foley G, Barnard G, Timberlake L (1984) Fuelwood: the energy crisis that won’t go away. International Institute for Environment and Development, London. https://portals.iucn.org/library/node/21118. Accessed 21 July 2017
  5. 5.
    International Energy Agency, Energy for Cooking in Developing Countries, World Energy Outlook 2006 (2006).  https://doi.org/10.1787/weo-2006-16-en
  6. 6.
    Wanstall L (2015) Residential heating with wood and coal: health impacts and policy options in Europe and North America, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0009/271836/ResidentialHeatingWoodCoalHealthImpacts.pdf. Accessed 17 July 2017
  7. 7.
    Mytting L (2015) Norwegian wood: chopping, stacking and drying wood the Scandinavian way. MacLehose Press, Quercus, LondonGoogle Scholar
  8. 8.
    Sutar KB, Kohli S, Ravi MR, Ray A (2015) Biomass cookstoves: a review of technical aspects. Renew Sust Energ Rev 41:1128–1166.  https://doi.org/10.1016/j.rser.2014.09.003 CrossRefGoogle Scholar
  9. 9.
    Jetter JJ, Kariher P (2009) Solid-fuel household cook stoves: characterization of performance and emissions. Biomass Bioenergy 33:294–305.  https://doi.org/10.1016/j.biombioe.2008.05.014 CrossRefGoogle Scholar
  10. 10.
    Kshirsagar MP, Kalamkar VR (2014) A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renew Sust Energ Rev 30:580–603.  https://doi.org/10.1016/j.rser.2013.10.039 CrossRefGoogle Scholar
  11. 11.
    Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Prüss-Ustün A et al (2013) Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect 121:784–790.  https://doi.org/10.1289/ehp.1205987 CrossRefGoogle Scholar
  12. 12.
    Masera OR, Saatkamp BD, Kammen DM (2000) From linear fuel switching to multiple cooking strategies: a critique and alternative to the energy ladder model. World Dev 28:2083–2103.  https://doi.org/10.1016/S0305-750X(00)00076-0 CrossRefGoogle Scholar
  13. 13.
    Ruiz-Mercado I, Masera O (2015) Patterns of stove use in the context of fuel–device stacking: rationale and implications. EcoHealth 12:42–56.  https://doi.org/10.1007/s10393-015-1009-4 CrossRefGoogle Scholar
  14. 14.
    Patronene J, Kaura E, Torvestad C (2017) Nordic heating and cooling: Nordin approach to EU’s heating and cooling strategy, Copenhagen.  https://doi.org/10.6027/TN2017-532
  15. 15.
    McDade S (2004) Fueling development: the role of LPG in poverty reduction and growth. Energy Sustain Dev 8:74–81.  https://doi.org/10.1016/S0973-0826(08)60469-X CrossRefGoogle Scholar
  16. 16.
    Eaton SB (2006) The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc 65:1–6.  https://doi.org/10.1079/PNS2005471 CrossRefGoogle Scholar
  17. 17.
    Carmody RN, Wrangham RW (2009) The energetic significance of cooking. J Hum Evol 57:379–391.  https://doi.org/10.1016/j.jhevol.2009.02.011 CrossRefGoogle Scholar
  18. 18.
    Bressani R, Chon C (1996) Effects of altitude above sea level on the cooking time and nutritional value of common beans. Plant Foods Hum Nutr 49:53–61.  https://doi.org/10.1007/BF01092522 CrossRefGoogle Scholar
  19. 19.
    Potter C, Klooster S, Genovese V (2012) Net primary production of terrestrial ecosystems from 2000 to 2009. Clim Chang 115:365–378.  https://doi.org/10.1007/s10584-012-0460-2 CrossRefGoogle Scholar
  20. 20.
    Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966.  https://doi.org/10.1029/2000GB001382 CrossRefGoogle Scholar
  21. 21.
    Harrison ME, Page SE, Limin SH (2009) The global impact of Indonesian forest fires. Biologist 56:156–163. http://citeseerx.ist.psu.edu/viewdoc/download?doi= Accessed 21 July 2017Google Scholar
  22. 22.
    Drigo R, Trossero M, Ghilardi A, Masero O, WISDOM Case Studies Global Map, Woodfuel Integr. Supply/Demand Overv. Mapp (2017) http://www.wisdomprojects.net/global/cs.asp. Accessed 21 July 2017
  23. 23.
    an A.H.P. of the BOSTID, Advisory Committee on Technology Innovation, B. on S. and T. for I. Development, Office of International Affairs (1983) Firewood crops: shrub and tree species for energy production, vol 2. National Academies Press, Washington, DC. http://dx.doi.org/10.17226/19480 Google Scholar
  24. 24.
    Mead DJ (2005) Forests for energy and the role of planted trees. CRC Crit Rev Plant Sci 24:407–421.  https://doi.org/10.1080/07352680500316391 CrossRefGoogle Scholar
  25. 25.
    Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J et al (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Clim Chang. https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/supplementary/WG1AR5_Ch08SM_FINAL.pdf. Accessed 21 July 2017
  26. 26.
    Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552.  https://doi.org/10.1002/jgrd.50171 CrossRefGoogle Scholar
  27. 27.
    Heringa MF, DeCarlo PF, Chirico R, Lauber A, Doberer A, Good J et al (2012) Time-resolved characterization of primary emissions from residential wood combustion appliances. Environ Sci Technol 46:11418–11425.  https://doi.org/10.1021/es301654w CrossRefGoogle Scholar
  28. 28.
    Bizzo WA, De Calan B, Myers R, Hannecart T (2004) Safety issues for clean liquid and gaseous fuels for cooking in the scope of sustainable development. Energy Sustain Dev III:60–67. http://www.unitoops.com/safetyissues.pdf. Accessed 21 July 2017CrossRefGoogle Scholar
  29. 29.
    Thompson E (1979) Fire array and apparatus. 4271817 A. http://www.google.tl/patents/US4271817. Accessed 21 July 2017
  30. 30.
    Owen M, Stone D (2002) UNHCR – handbook of experiences in energy conservation and alternative fuels: cooking options in refugee situations, Geneva. http://www.unhcr.org/protection/environment/406c368f2/handbook-experiences-energy-conservation-alternative-fuels-cooking-options.html. Accessed 21 July 2017
  31. 31.
    Rehder J (2006) The mastery and uses of fie in antiquity. McGill-Queen’s University Press, MontrealGoogle Scholar
  32. 32.
    Bryan M, Still D, Scott P, Hoffa G, Ogle D, Bails R et al (2006) Design principles for wood burning cook stoves (EPA-402-k-05-004), Washington, DC. http://bioenergylists.org/stovesdoc/Pcia/DesignPrinciples for Wood Burning Cookstoves.pdf. Accessed 24 July 2017
  33. 33.
    Amrose S, Kisch GT, Kirubi C, Woo J, Gadgil A (2008) Development and testing of the Berkeley Darfur Stove, Berkeley. http://gadgillab.berkeley.edu/wp-content/uploads/2013/08/LBNL116E_DevTestBDS_2008.pdf. Accessed 22 July 2017
  34. 34.
    Melamed Y, Kislev ME, Geffen E, Lev-Yadun S, Goren-Inbar N (2016) The plant component of an Acheulian diet at Gesher Benot Ya’aqov, Israel. Proc Natl Acad Sci USA 113:14674–14679.  https://doi.org/10.1073/pnas.1607872113 CrossRefGoogle Scholar
  35. 35.
    Taylor RE (2000) The contribution of radiocarbon dating to new world archaeology. Radiocarbon 42:1–21. https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/3850/3275. Accessed 22 July 2017CrossRefGoogle Scholar
  36. 36.
    Bussman PJT (1988) Woodstoves: theory and applications in developing countries. Technische Universiteit Eindhoven, Eindhoven.  https://doi.org/10.6100/IR291952 Google Scholar
  37. 37.
    Baldwin SF (1987) Biomass stoves: engineering, design, development, and dissemination. VITA (Volunteers in Technical Assistance, Arlington. http://blog.newdawnengineering.com/website/library/Papers+Articles/Biomass Stoves, Engineering Design, Development and Dissemination, Samuel Baldwin 1987.pdf. Accessed 22 July 2017
  38. 38.
    Jetter J, Zhao Y, Smith KR, Khan B, Yelverton T, DeCarlo P et al (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46:10827–10834.  https://doi.org/10.1021/es301693f CrossRefGoogle Scholar
  39. 39.
    MacCarty N, Still D, Ogle D (2010) Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy Sustain Dev 14:161–171.  https://doi.org/10.1016/j.esd.2010.06.002 CrossRefGoogle Scholar
  40. 40.
    WHO | Indoor air quality guidelines: household fuel combustion, World Health Organization, Geneva, 2014. http://www.who.int/indoorair/publications/household-fuel-combustion/en/. Accessed 16 July 2017
  41. 41.
    Lombardi F, Riva F, Bonamini G, Barbieri J, Colombo E (2017) Laboratory protocols for testing of Improved Cooking Stoves (ICSs): a review of state-of-the-art and further developments. Biomass Bioenergy 98:321–335.  https://doi.org/10.1016/j.biombioe.2017.02.005 CrossRefGoogle Scholar
  42. 42.
    Smith KR, Pennise D, Khummongkol P, Ritgeen K, Zhang J, Panyathanya W et al (1999) Greenhouse gases from small-scale combustion devices in developing countries, charcoal-making kilns in Thailand, Washington, DC. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63468&subject=AirResearch&showCriteria=0&searchAll=AirandNitrogen&actType=Product&TIMSType=PUBLISHED+REPORT&sortBy=revisionDate. Accessed 22 July 2017
  43. 43.
    Antal MJ, Mok WSL, Varhegyi G, Szekely T (1990) Review of methods for improving the yield of charcoal from biomass. Energy Fuels 4:221–225.  https://doi.org/10.1021/ef00021a001. Accessed 22 July 2017CrossRefGoogle Scholar
  44. 44.
    Antal MJJ (1993) Process for charcoal production from woody and herbaceous plant material. US5435983. http://www.google.com/patents/US5435983. Accessed 22 July 2017
  45. 45.
    Taylor ET, Wirmvem MJ, Sawyer VH, Nakai S (2015) Characterization and determination of PM2.5 bound polycyclic aromatic hydrocarbons (PAHS) in indoor and outdoor air in western Sierra Leone. J Environ Anal Toxicol 5.  https://doi.org/10.4172/2161–0525.1000307
  46. 46.
    Smith KR (1987) Biofuels, air pollution, and health: a global review. Plenum Press, New YorkGoogle Scholar
  47. 47.
    Murray C, Lopez A (eds) (2002) WHO | The world health report 2002 – reducing risks, promoting healthy life. World Health Organization, Geneva. http://www.who.int/whr/2002/en/. Accessed 22 July 2017Google Scholar
  48. 48.
    Edwards R, Princevac M, Weltman R, Ghasemian M, Arora NK, Bond T (2017) Modeling emission rates and exposures from outdoor cooking. Atmos Environ 164:50–60.  https://doi.org/10.1016/j.atmosenv.2017.05.029 CrossRefGoogle Scholar
  49. 49.
    Bodin S, Levander T (2014) Controlling emissions from wood burning legislation and regulations in Nordic countries to control emissions from residential wood burning an examination of past experience, Nordic Council of MinistersGoogle Scholar
  50. 50.
    Mortimer K, Ndamala CB, Naunje AW, Malava J, Katundu C, Weston W et al (2017) A cleaner burning biomass-fueled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. Lancet 389:167–175.  https://doi.org/10.1016/S0140-6736(16)32507-7 CrossRefGoogle Scholar
  51. 51.
    Batterbury S, Warren A (2001) The African Sahel 25 years after the great drought: assessing progress and moving towards new agendas and approaches. Glob Environ Chang 11:1–8.  https://doi.org/10.1016/S0959-3780(00)00040-6 CrossRefGoogle Scholar
  52. 52.
    Johnson M, Edwards R, Ghilardi A, Berrueta V, Gillen D, Frenk CA et al (2009) Quantification of carbon savings from improved biomass cookstove projects. Environ Sci Technol 43:2456–2462.  https://doi.org/10.1021/es801564u CrossRefGoogle Scholar
  53. 53.
    Venkataraman C, Sagar AD, Habib G, Lam N, Smith KR (2010) The Indian national initiative for advanced biomass cookstoves: the benefits of clean combustion. Energy Sustain Dev 14:63–72.  https://doi.org/10.1016/j.esd.2010.04.005 CrossRefGoogle Scholar
  54. 54.
    Edwards RD, Smith K, Zhang J, Ma Y (2003) Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China. Chemosphere 50:201–215.  https://doi.org/10.1016/S0045-6535(02)00478-2 CrossRefGoogle Scholar
  55. 55.
    IRG (2010) Black carbon emissions in Asia: sources, impacts, and abatement opportunities. Washington, DC. http://www.pciaonline.org/files/BlackCarbonEmissionsinAsia.pdf. Accessed 22 July 2017
  56. 56.
  57. 57.
    Bailis R, Drigo R, Ghilardi A, Masera O (2015) The carbon footprint of traditional woodfuels. Nat Clim Chang 5:266–272.  https://doi.org/10.1038/nclimate2491 CrossRefGoogle Scholar
  58. 58.
    Boden T, Marland G, Andres R (2017) Global, regional, and national fossil-fuel CO2 emissions, Oak Ridge. doi: https://doi.org/10.3334/CDIAC/00001_V2017
  59. 59.
    Stanistreet D, Puzzolo E, Bruce N, Pope D, Rehfuess E (2014) Factors influencing household uptake of improved solid fuel stoves in low- and middle-income countries: a qualitative systematic review. Int J Environ Res Public Health 11:8228–8250.  https://doi.org/10.3390/ijerph110808228 CrossRefGoogle Scholar
  60. 60.
    Puzzolo E, Pope D, Stanistreet D, Rehfuess EA, Bruce NG (2016) Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use. Environ Res 146:218–234.  https://doi.org/10.1016/j.envres.2016.01.002 CrossRefGoogle Scholar
  61. 61.
    Arthur WB (2009) The nature of technology: what it is and how it evolves. Free Press, New YorkGoogle Scholar
  62. 62.
    Slaski X, Thurber MC (2009) Three key obstacles to cookstove adoption (and how to overcome them). Policy brief. In: Rai K, McDonald J (eds) Cookstoves and markets: experiences, successes and opportunities. GVEP International, London, pp 37–40. https://pesd.fsi.stanford.edu/publications/three_key_obstacles_to_cookstove_adoption_and_how_to_overcome_them. Accessed 22 July 2017Google Scholar
  63. 63.
    Collier P (2009) The bottom billion: why the poorest countries are failing and what can be done about it. Oxford University Press, OxfordGoogle Scholar
  64. 64.
    Ezzati M, Baumgartner JC (2017) Household energy and health: where next for research and practice? Lancet 389:130–132.  https://doi.org/10.1016/S0140-6736(16)32506-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.OttawaCanada

Section editors and affiliations

  • Martin Kaltschmitt
    • 1
  1. 1.Institute of Environmental Technology and Energy Economics (IUE)Hamburg University of Technology (TUHH)HamburgGermany