Skip to main content

Nuclear Fusion

  • Living reference work entry
  • First Online:
  • 192 Accesses

Symbols

Symbol

Units

Meaning

A

m

Magnetic vector potential

a

 

Minor plasma radius at plasma edge

B

T

Magnetic field

Beta, β

None

Ratio of (plasma pressure)/(magnetic field pressure)

Bm Bmax

T

Maximum magnetic field

Bo

T

Central magnetic field

Bp

T

Poloidal magnetic field

Bt

T

Toroidal magnetic field

D

Deuterium or deuteron

Φp

Wb

Poloidal magnetic flux

Φt

Wb

Toroidal magnetic flux

Ip

MA

Maximum plasma current

K

T2m4

Magnetic helicity

L

m

Plasma length

me

kg

Electron mass

mi

kg

Ion mass

n

m−3

Plasma electron density (electrons per m3)

Q

 

Fusion energy gain ratio

r

m

Minor plasma radius

R Ro

m

Major plasma radius and its value at plasma center

T

C K, keV

Temperature. 1 keV = 11.6 MK (MegaKelvin)

T

Tritium or triton

Te

keV

Electron temperature

Ti

keV

Ion temperature

V

V

voltage

v||

m/s

Particle velocity component along B field direction

v

m/s

Particle velocity component perpendicular to B field

Definition of the Subject

Nuclear Fusion of hydrogen isotopes into helium and heavier...

This is a preview of subscription content, log in via an institution.

Abbreviations

ARC:

Affordable, reliable, compact

ARIES:

Advanced reactor innovative engineering studies

ARPA:

Advanced research projects agency

ASDEX:

Axi-symmetric divertor Experiment

CFC:

Carbon fiber composite

COE:

Cost of electricity

DD:

Deuterium-deuterium reaction or fuel

DT:

Deuterium-tritium reaction or fuel

EAST:

Experimental advanced superconducting Tokamak, Hefei

EBT:

Elmo bumpy torus, ORNL

ECRH or ECH:

Electron cyclotron resonance heating

EFDA:

European Fusion Development Agreement

FLiBe:

LiF-BeF molten salt mixture

FNSF:

Fusion nuclear science facility

FRC:

Field reversed configuration

GDT:

Gasdynamic trap, Novosibirsk

HIT:

Helicity injected torus, University of Washington

HTSC:

High temperature superconductor

ICF:

Inertial confinement fusion

ICRH or ICH:

Ion cyclotron resonance heating

IDCD:

Imposed dynamo current drive

IEC:

Inertial electrostatic confinement

IFMIF:

International Fusion Materials Irradiation Facility

ITER:

International Thermonuclear Experimental Reactor

JET:

Joint European torus

KSTAR:

Korean superconducting Tokamak advanced research

LANL:

Los Alamos National Laboratory

LENR:

Low energy nuclear reactions

LHCD or LH:

Lower hybrid wave current drive or heating

LHD:

Large helical device

LLNL:

Lawrence Livermore National Laboratory

MAST:

Meg-ampere spherical Tokamak

MFTF:

Mirror fusion test facility, LLNL

MHD:

Magnetohydrodynamic model – treats plasma as a conducting fluid

MIF:

Magneto-inertial fusion

MTF:

Magnetized target fusion

NBI:

Neutral beam injection

NCSX:

National Compact Stellarator Experiment, PPPL

NIF:

National Ignition Facility, LLNL

NIFS:

National Institute for Fusion Sciences (Japan)

NRL:

Naval Research Laboratory

NSTX:

National Spherical Tokamak Experiment, PPPL

OH:

Ohmic heating

ORNL:

Oak Ridge National Laboratory

PF:

Poloidal magnetic field

PoP:

Proof of principle

PPPL:

Princeton Plasma Physics Laboratory

Q:

Fusion energy gain ratio = (fusion energy)/(input energy)

RAFM:

Reduced activation ferritic martensitic steels

RF, rf:

Radiofrequency

RFP:

Reversed field pinch

SC:

Superconducting magnet coils

SI:

Steady injection

SNLA:

Sandia National Laboratories Albuquerque

SRRS:

Stimulated rotational Raman scattering

SSPX:

Sustained spheromak physics experiment

TBR:

Tritium breeding ratio

TF:

Toroidal magnetic field

TFTR:

Tokamak fusion test reactor, PPPL

References

  1. Freidberg J (2006) Plasma physics and fusion energy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. All-the-world’s tokamaks (2010) http://www.toodlepip.com/tokamak

  3. Bolt H (2001) Materials for fusion. European White Book on Fundamental Research in Materials Science. Max-Planck-Gesellschaft, Munich, Section 2.9, Figure 2.17. (See also http://www.mpg.de/bilderBerichteDokumente/dokumentation/europWhiteBook/)

  4. Laudon X (2015) EU strategy to fusion power. Fusion Power Associates Annual Meeting. Washington DC, 16–17 December 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  5. Prager S (2015) Comments on fusion development strategy for the US. Fusion Power Associates Annual Meeting. Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  6. Zarnstorff MC (2015) Stellarator paths to DEMO, fusion power associates annual meeting. Washington DC, 16–17 December 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  7. Laudon X (2015) op. cit

    Google Scholar 

  8. Prager S (2015) op. cit

    Google Scholar 

  9. Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW). U.S. Department of Energy, Bethesda, p 203, 8–12 June, 2009

    Google Scholar 

  10. Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW). U.S. Department of Energy, Bethesda, p 213, 8–12 June, 2009

    Google Scholar 

  11. Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, New York, Chapter 12

    Google Scholar 

  12. Hooper EB, Bulmer RH, Cohen BI, Hill DN, Holcomb CT, Hudson B, McLean HS, Pearlstein LD, Romero-Talam’as CA, Sovinec CR, Stallard BW, Wood RD, Woodruff S (2012) Sustained spheromak physics experiment (SSPX): design and physics results. Plasma Phys Control Fusion 54:113001. doi:10.1088/0741-3335/54/11/113001 (26pp)

    Article  Google Scholar 

  13. Jarboe TR et al (2012) Imposed-dynamo current drive. Nucl Fusion 52:083017

    Article  Google Scholar 

  14. Taylor JB (1974) Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys Rev Lett 33:1139–1141

    Article  Google Scholar 

  15. Jarboe TR et al (2012) op.cit

    Google Scholar 

  16. Jarboe TR, Nelson BA, Sutherland DA (2015) A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field. Phys Plasmas 22:072503

    Article  Google Scholar 

  17. Sutherland DA et al (2014) The dynomak: an advanced spheromaks reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies. Fusion Eng Des 89:412–425

    Article  CAS  Google Scholar 

  18. Hugrass WH, Jones IR, McKenna KF, Phillips MGR, Storer RG, Tuczek H (1980) Compact torus configuration generated by a rotating magnetic field: the Rotamak. Phys Rev Lett 44:1676–1679

    Article  CAS  Google Scholar 

  19. Kawamori E, Ono Y (2005) Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration. Phys Rev Lett 95(18):085003

    Article  Google Scholar 

  20. Tacetti JM et al (2003) FRX-L: a field-reversed configuration plasma injector for magnetized target fusion. Rev Sci Instrum 74(10):4314–4323

    Article  Google Scholar 

  21. Wurden GA et al (2015) Magneto-inertial fusion. J Fusion Energy. Accessed online at file:///C:/Users/Thomas%20Dolan/Downloads/Wurden-JFE-MIF-article-2015%20(1).pdf

    Google Scholar 

  22. Slough J et al (2007) The pulsed high density experiment: concept, design, and initial results. J Fusion Energ 26:199–205

    Article  CAS  Google Scholar 

  23. McGrath P (2015) ALPHA: accelerating low-cost plasma heating and assembly. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  24. Sinars D (2015) Status of the magnetized liner inertial fusion research program in the United States. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  25. Laberge M (n.d.) General fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  26. Hsu SC (n.d.) Spherically imploding plasma liners as a standoff magneto-inertial-fusion driver. ARPA-E project slicksheet; http://arpa-e.energy.gov/?q=slick-sheet-project/plasma-liners-fusion; downloaded on Jan. 19, 2016

  27. Hsu SC et al (2012) Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion. IEEE Trans Plasma Sci 40:1287

    Google Scholar 

  28. Thio YCF et al. (1999) Magnetized target fusion in a spheroidal geometry with Standoff Drivers. In: Current trends in International Fusion Research – Proc. 2nd International Symposium. Ed. E. Panarella (NRC Canada, Ottawa, 1999), p 113

    Google Scholar 

  29. Lindemuth IR, Siemon RE (2009) The fundamental parameter space of controlled thermonuclear fusion. Am J Phys 77:407

    Google Scholar 

  30. Hsu SC (n.d.) Plasma liners and the potential for a standoff magneto-inertial fusion reactor. (see slide 5), talk presented at the ARPA-E Workshop “Drivers for Economical Fusion Technologies,” Oct. 29–30, 2013. Berkeley. http://arpa-e.energy.gov/?q=document/drivers-fusion-workshop-hsu-presentation

  31. Witherspoon FD et al (2009) A contoured gap coaxial plasma gun with injected plasma armature. Rev Sci Instrum 80:083506

    Google Scholar 

  32. Ichimura M et al (2006) ICRF experiments and potential formation on the GAMMA 10 tandem mirror. Plasma Sci Technol 8(1):87–90

    Article  CAS  Google Scholar 

  33. Bagryansky PA et al (2015) Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nuclear Fusion 55:053009. doi:10.1088/0029-5515/55/5/053009

    Article  Google Scholar 

  34. Simonen T (2015) A magnetic mirror strategy to fusion power. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  35. Dolan TJ (1994) Magnetic electrostatic plasma confinement. Plasma Phys Control Fusion 36:1539–1593

    Article  CAS  Google Scholar 

  36. Sato E (1985) Radio-frequency containment (RFC-XX-M). Nucl Fusion 25(9):1197–1199

    Article  CAS  Google Scholar 

  37. Park J et al (2014) High energy electron confinement in a magnetic Cusp configuration, arXiv 1406.0133v1, 2014.06.01. Accessed at http://arxiv.org/pdf/1406.0133v1.pdf

  38. Dolan TJ (1994) op. cit.

    Google Scholar 

  39. Binderbauer M (2015) Progress at Tri Alpha Energy. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. (Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  40. Kesner J et al (2006) Innovative confinement concepts workshop. Austin, February 14, Paper BP1.00031

    Google Scholar 

  41. Balin DV et al (2011) High precision study of muon catalysed fusion in D2 and H2 gas. Phys Part Nucl 42(2):185–214, See also https://en.wikipedia.org/wiki/Muon-catalyzed_fusion

    Article  CAS  Google Scholar 

  42. Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, Chapter 15

    Google Scholar 

  43. McCrory RL (2015) Perspectives on inertial fusion energy. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  44. Obenschain S (2015) Fusion development strategies more robust approaches to laser ICF. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  45. Rej D (2015) op. cit.

    Google Scholar 

  46. Ebbers C, Caird J, Moses E (2009) Laser focus world 45, No.3, March 1

    Google Scholar 

  47. Azechi H (2015) Laser fusion status in Japan. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  48. Storms E (2014) The explanation of low energy nuclear reactions. Infinite Energy Press, Concord

    Google Scholar 

  49. Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW), Bethesda, MD, 8–12 June, 2009, U.S. Department of Energy, Thrust 7, pp 285–293

    Google Scholar 

  50. Kingham D. (2015) High temperature superconducting magnets and other innovations for fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  51. Minervini JV (2015) High temperature superconducting magnets for fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  52. IFMIF International Team (2004) International Fusion Materials Irradiation Facility (IFMIF) comprehensive design report. International Energy Agency, Paris

    Google Scholar 

  53. Zakharkov LE et al (2004) Ignited spherical tokamaks. Fusion Eng Des 72:149–168

    Article  Google Scholar 

  54. Zinkle S (2015) Materials prospects for fusion power plants. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  55. Dolan TJ (2014) Magnetic fusion technology. Springer, London

    Google Scholar 

  56. Laudon (2014) op. cit.

    Google Scholar 

  57. Kaslow J et al (1994) Criteria for practical fusion power systems: report from the EPRI fusion panel. J Fusion Energy 13(2/3):181–183

    Article  CAS  Google Scholar 

  58. Dolan TJ (1993) Fusion power economy of scale. Fusion Technol 24:97–111

    CAS  Google Scholar 

  59. Terada A et al (2007) Development of hydrogen production technology by thermochemical water splitting IS process, pilot test plan. J Nucl Sci Technol 44(3):477–482

    Article  CAS  Google Scholar 

  60. Freidberg J et al (2009) Research needs for fusion-fission hybrid systems. Report of the Research Needs Workshop (ReNeW. U.S. Department of Energy, Gaithersburg, Maryland, Sept 30 – Oct 2, 2009

    Google Scholar 

  61. Kessel CE (2015) Tokamak fusion nuclear science facility. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015

  62. Sorbom BN et al (2015) ARC: a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng Des. doi:10.1016/j.fusengdes.2015.07.008

    Google Scholar 

  63. Sorbom, ibid

    Google Scholar 

  64. Hirsch RL (2015) Fusion research: time to face reality. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. (Available at http://fire.pppl.gov/fpa_annual_meet.html#2015)

The Following Books May Be of General Interest

  • Braams CM, Stott PE (2002) Nuclear Fusion: Half a century of magnetic confinement fusion research. Institute of Physics, Philadelphia

    Book  Google Scholar 

  • Chen FF (1984) Introduction to plasma physics and controlled thermonuclear fusion. Plenum, New York

    Book  Google Scholar 

  • Chen FF (2011) An indispensable truth – how fusion power can save the planet. Springer, New York

    Book  Google Scholar 

  • Dinklage A et al (2005) Plasma physics – confinement, transport, and collective effects. Springer

    Google Scholar 

  • Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford

    Google Scholar 

  • Dolan TJ (ed) (2014) Magnetic fusion technology. Springer, New York

    Google Scholar 

  • Freidberg J (2006) Plasma physics and fusion energy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kikuchi M, Lackner K, Tran MQ (eds) (2012) Fusion physics. IAEA, Vienna, 1129 pages

    Google Scholar 

Download references

Acknowledgments

The following provided helpful comments on this article: Ralph Moir, Chan Choi, Lee Cadwallader, Nicholas Tsoulfanidis, Alex Parrish, Daniel Prater, and the Institute for Plasma Research (Gandhinagar, India). Charlou Dolan drew many of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Dolan, T.J. (2016). Nuclear Fusion. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_31-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_31-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics