Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Nuclear Fusion

  • Thomas J. Dolan
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_31-3

Symbols

Symbol

Units

Meaning

A

m

Magnetic vector potential

a

 

Minor plasma radius at plasma edge

B

T

Magnetic field

Beta, β

None

Ratio of (plasma pressure)/(magnetic field pressure)

Bm Bmax

T

Maximum magnetic field

Bo

T

Central magnetic field

Bp

T

Poloidal magnetic field

Bt

T

Toroidal magnetic field

D

Deuterium or deuteron

Φp

Wb

Poloidal magnetic flux

Φt

Wb

Toroidal magnetic flux

Ip

MA

Maximum plasma current

K

T2m4

Magnetic helicity

L

m

Plasma length

me

kg

Electron mass

mi

kg

Ion mass

n

m−3

Plasma electron density (electrons per m3)

Q

 

Fusion energy gain ratio

r

m

Minor plasma radius

R Ro

m

Major plasma radius and its value at plasma center

T

C K, keV

Temperature. 1 keV = 11.6 MK (MegaKelvin)

T

Tritium or triton

Te

keV

Electron temperature

Ti

keV

Ion temperature

V

V

voltage

v||

m/s

Particle velocity component along B field direction

v

m/s

Particle velocity component perpendicular to B field

Keywords

Toroidal Field Neutral Beam Injection Magnetic Mirror Field Reverse Configuration Brayton Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The following provided helpful comments on this article: Ralph Moir, Chan Choi, Lee Cadwallader, Nicholas Tsoulfanidis, Alex Parrish, Daniel Prater, and the Institute for Plasma Research (Gandhinagar, India). Charlou Dolan drew many of the figures.

References

  1. 1.
    Freidberg J (2006) Plasma physics and fusion energy. Cambridge University Press, Cambridge, UKGoogle Scholar
  2. 2.
    All-the-world’s tokamaks (2010) http://www.toodlepip.com/tokamak
  3. 3.
    Bolt H (2001) Materials for fusion. European White Book on Fundamental Research in Materials Science. Max-Planck-Gesellschaft, Munich, Section 2.9, Figure 2.17. (See also http://www.mpg.de/bilderBerichteDokumente/dokumentation/europWhiteBook/)
  4. 4.
    Laudon X (2015) EU strategy to fusion power. Fusion Power Associates Annual Meeting. Washington DC, 16–17 December 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  5. 5.
    Prager S (2015) Comments on fusion development strategy for the US. Fusion Power Associates Annual Meeting. Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  6. 6.
    Zarnstorff MC (2015) Stellarator paths to DEMO, fusion power associates annual meeting. Washington DC, 16–17 December 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  7. 7.
    Laudon X (2015) op. citGoogle Scholar
  8. 8.
    Prager S (2015) op. citGoogle Scholar
  9. 9.
    Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW). U.S. Department of Energy, Bethesda, p 203, 8–12 June, 2009Google Scholar
  10. 10.
    Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW). U.S. Department of Energy, Bethesda, p 213, 8–12 June, 2009Google Scholar
  11. 11.
    Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, New York, Chapter 12Google Scholar
  12. 12.
    Hooper EB, Bulmer RH, Cohen BI, Hill DN, Holcomb CT, Hudson B, McLean HS, Pearlstein LD, Romero-Talam’as CA, Sovinec CR, Stallard BW, Wood RD, Woodruff S (2012) Sustained spheromak physics experiment (SSPX): design and physics results. Plasma Phys Control Fusion 54:113001. doi:10.1088/0741-3335/54/11/113001 (26pp)CrossRefGoogle Scholar
  13. 13.
    Jarboe TR et al (2012) Imposed-dynamo current drive. Nucl Fusion 52:083017CrossRefGoogle Scholar
  14. 14.
    Taylor JB (1974) Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys Rev Lett 33:1139–1141CrossRefGoogle Scholar
  15. 15.
    Jarboe TR et al (2012) op.citGoogle Scholar
  16. 16.
    Jarboe TR, Nelson BA, Sutherland DA (2015) A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field. Phys Plasmas 22:072503CrossRefGoogle Scholar
  17. 17.
    Sutherland DA et al (2014) The dynomak: an advanced spheromaks reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies. Fusion Eng Des 89:412–425CrossRefGoogle Scholar
  18. 18.
    Hugrass WH, Jones IR, McKenna KF, Phillips MGR, Storer RG, Tuczek H (1980) Compact torus configuration generated by a rotating magnetic field: the Rotamak. Phys Rev Lett 44:1676–1679CrossRefGoogle Scholar
  19. 19.
    Kawamori E, Ono Y (2005) Effect of ion skin depth on relaxation of merging spheromaks to a field-reversed configuration. Phys Rev Lett 95(18):085003CrossRefGoogle Scholar
  20. 20.
    Tacetti JM et al (2003) FRX-L: a field-reversed configuration plasma injector for magnetized target fusion. Rev Sci Instrum 74(10):4314–4323CrossRefGoogle Scholar
  21. 21.
    Wurden GA et al (2015) Magneto-inertial fusion. J Fusion Energy. Accessed online at file:///C:/Users/Thomas%20Dolan/Downloads/Wurden-JFE-MIF-article-2015%20(1).pdfGoogle Scholar
  22. 22.
    Slough J et al (2007) The pulsed high density experiment: concept, design, and initial results. J Fusion Energ 26:199–205CrossRefGoogle Scholar
  23. 23.
    McGrath P (2015) ALPHA: accelerating low-cost plasma heating and assembly. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  24. 24.
    Sinars D (2015) Status of the magnetized liner inertial fusion research program in the United States. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  25. 25.
    Laberge M (n.d.) General fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  26. 26.
    Hsu SC (n.d.) Spherically imploding plasma liners as a standoff magneto-inertial-fusion driver. ARPA-E project slicksheet; http://arpa-e.energy.gov/?q=slick-sheet-project/plasma-liners-fusion; downloaded on Jan. 19, 2016
  27. 27.
    Hsu SC et al (2012) Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion. IEEE Trans Plasma Sci 40:1287Google Scholar
  28. 28.
    Thio YCF et al. (1999) Magnetized target fusion in a spheroidal geometry with Standoff Drivers. In: Current trends in International Fusion Research – Proc. 2nd International Symposium. Ed. E. Panarella (NRC Canada, Ottawa, 1999), p 113Google Scholar
  29. 29.
    Lindemuth IR, Siemon RE (2009) The fundamental parameter space of controlled thermonuclear fusion. Am J Phys 77:407Google Scholar
  30. 30.
    Hsu SC (n.d.) Plasma liners and the potential for a standoff magneto-inertial fusion reactor. (see slide 5), talk presented at the ARPA-E Workshop “Drivers for Economical Fusion Technologies,” Oct. 29–30, 2013. Berkeley. http://arpa-e.energy.gov/?q=document/drivers-fusion-workshop-hsu-presentation
  31. 31.
    Witherspoon FD et al (2009) A contoured gap coaxial plasma gun with injected plasma armature. Rev Sci Instrum 80:083506Google Scholar
  32. 32.
    Ichimura M et al (2006) ICRF experiments and potential formation on the GAMMA 10 tandem mirror. Plasma Sci Technol 8(1):87–90CrossRefGoogle Scholar
  33. 33.
    Bagryansky PA et al (2015) Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nuclear Fusion 55:053009. doi:10.1088/0029-5515/55/5/053009CrossRefGoogle Scholar
  34. 34.
    Simonen T (2015) A magnetic mirror strategy to fusion power. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  35. 35.
    Dolan TJ (1994) Magnetic electrostatic plasma confinement. Plasma Phys Control Fusion 36:1539–1593CrossRefGoogle Scholar
  36. 36.
    Sato E (1985) Radio-frequency containment (RFC-XX-M). Nucl Fusion 25(9):1197–1199CrossRefGoogle Scholar
  37. 37.
    Park J et al (2014) High energy electron confinement in a magnetic Cusp configuration, arXiv 1406.0133v1, 2014.06.01. Accessed at http://arxiv.org/pdf/1406.0133v1.pdf
  38. 38.
    Dolan TJ (1994) op. cit.Google Scholar
  39. 39.
    Binderbauer M (2015) Progress at Tri Alpha Energy. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. (Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  40. 40.
    Kesner J et al (2006) Innovative confinement concepts workshop. Austin, February 14, Paper BP1.00031Google Scholar
  41. 41.
    Balin DV et al (2011) High precision study of muon catalysed fusion in D2 and H2 gas. Phys Part Nucl 42(2):185–214, See also https://en.wikipedia.org/wiki/Muon-catalyzed_fusion CrossRefGoogle Scholar
  42. 42.
    Dolan TJ (1982) Fusion research. Pergamon Press, Elmsford, Chapter 15Google Scholar
  43. 43.
    McCrory RL (2015) Perspectives on inertial fusion energy. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  44. 44.
    Obenschain S (2015) Fusion development strategies more robust approaches to laser ICF. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  45. 45.
    Rej D (2015) op. cit.Google Scholar
  46. 46.
    Ebbers C, Caird J, Moses E (2009) Laser focus world 45, No.3, March 1Google Scholar
  47. 47.
    Azechi H (2015) Laser fusion status in Japan. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  48. 48.
    Storms E (2014) The explanation of low energy nuclear reactions. Infinite Energy Press, ConcordGoogle Scholar
  49. 49.
    Hazeltine R et al (2009) Research needs for magnetic fusion energy sciences. Report of the Research Needs Workshop (ReNeW), Bethesda, MD, 8–12 June, 2009, U.S. Department of Energy, Thrust 7, pp 285–293Google Scholar
  50. 50.
    Kingham D. (2015) High temperature superconducting magnets and other innovations for fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  51. 51.
    Minervini JV (2015) High temperature superconducting magnets for fusion. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  52. 52.
    IFMIF International Team (2004) International Fusion Materials Irradiation Facility (IFMIF) comprehensive design report. International Energy Agency, ParisGoogle Scholar
  53. 53.
    Zakharkov LE et al (2004) Ignited spherical tokamaks. Fusion Eng Des 72:149–168CrossRefGoogle Scholar
  54. 54.
    Zinkle S (2015) Materials prospects for fusion power plants. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  55. 55.
    Dolan TJ (2014) Magnetic fusion technology. Springer, LondonGoogle Scholar
  56. 56.
    Laudon (2014) op. cit.Google Scholar
  57. 57.
    Kaslow J et al (1994) Criteria for practical fusion power systems: report from the EPRI fusion panel. J Fusion Energy 13(2/3):181–183CrossRefGoogle Scholar
  58. 58.
    Dolan TJ (1993) Fusion power economy of scale. Fusion Technol 24:97–111Google Scholar
  59. 59.
    Terada A et al (2007) Development of hydrogen production technology by thermochemical water splitting IS process, pilot test plan. J Nucl Sci Technol 44(3):477–482CrossRefGoogle Scholar
  60. 60.
    Freidberg J et al (2009) Research needs for fusion-fission hybrid systems. Report of the Research Needs Workshop (ReNeW. U.S. Department of Energy, Gaithersburg, Maryland, Sept 30 – Oct 2, 2009Google Scholar
  61. 61.
    Kessel CE (2015) Tokamak fusion nuclear science facility. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. Available at http://fire.pppl.gov/fpa_annual_meet.html#2015
  62. 62.
    Sorbom BN et al (2015) ARC: a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Eng Des. doi:10.1016/j.fusengdes.2015.07.008Google Scholar
  63. 63.
    Sorbom, ibidGoogle Scholar
  64. 64.
    Hirsch RL (2015) Fusion research: time to face reality. Fusion Power Associates Annual Meeting, Washington DC, 16–17 December, 2015. (Available at http://fire.pppl.gov/fpa_annual_meet.html#2015)

The Following Books May Be of General Interest

  1. Braams CM, Stott PE (2002) Nuclear Fusion: Half a century of magnetic confinement fusion research. Institute of Physics, PhiladelphiaCrossRefGoogle Scholar
  2. Chen FF (1984) Introduction to plasma physics and controlled thermonuclear fusion. Plenum, New YorkCrossRefGoogle Scholar
  3. Chen FF (2011) An indispensable truth – how fusion power can save the planet. Springer, New YorkCrossRefGoogle Scholar
  4. Dinklage A et al (2005) Plasma physics – confinement, transport, and collective effects. SpringerGoogle Scholar
  5. Dolan TJ (1982) Fusion research. Pergamon Press, ElmsfordGoogle Scholar
  6. Dolan TJ (ed) (2014) Magnetic fusion technology. Springer, New YorkGoogle Scholar
  7. Freidberg J (2006) Plasma physics and fusion energy. Cambridge University Press, Cambridge, UKGoogle Scholar
  8. Kikuchi M, Lackner K, Tran MQ (eds) (2012) Fusion physics. IAEA, Vienna, 1129 pagesGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Nuclear, Plasma, and Radiological EngineeringUniversity of IllinoisUrbanaUSA