Skip to main content

Seed Dormancy and Agriculture and Physiology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Baskin CC, Baskin JM (1998) Seeds: ecology biogeography and evolution of dormancy and germination. Academic, San Diego

    Google Scholar 

  2. Chahtane H, Kim W, Lopez-Molina L (2017) Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot 68:857–869

    Google Scholar 

  3. Nikolaeva MG (1967) Physiology of deep dormancy in seeds. Izdatel’stvo ‘Nauka’, Leningrad (in Russian) (trans: Shapiro Z) (1969). National Science Foundation, Washington, DC, p 219

    Google Scholar 

  4. Baskin JM, Baskin CC (2004) A classification system for dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  5. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  Google Scholar 

  6. Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73

    Article  CAS  Google Scholar 

  7. Benech-Arnold RL (2004) Inception, maintenance and termination of dormancy in grain crops. Physiology, genetics and environmental control. In: Benech-Arnold R, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Product Press, New York, pp 169–198

    Google Scholar 

  8. Walker-Simmons MK, Sesing J (1990) Temperature effects on embryonic abscisic acid levels during development of wheat grain dormancy. J Plant Growth Regul 9:51–56

    Article  CAS  Google Scholar 

  9. Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84

    Google Scholar 

  10. Benech-Arnold RL, Fenner M, Edwards PJ (1991) Changes in germinability, ABA levels and ABA embryonic sensitivity in developing seeds of Sorghum bicolor induced by water stress during grain filling. New Phytol 118:339–347

    Article  Google Scholar 

  11. Benech-Arnold RL, Fenner M, Edwards PJ (1995) Influence of potassium nutrition on germinability, ABA content and embryonic sensitivity to ABA of developing seeds of Sorghum bicolor (L.) Moench. New Phytol 130:207–216

    Article  Google Scholar 

  12. Gate P (1995) Ecophysiologie de la germination sur pied. Perspect Agri 204:22–29

    Google Scholar 

  13. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge, p 250

    Book  Google Scholar 

  14. Allen PS, Benech-Arnold RL, Batlla D, Bradford KJ (2007) Modeling of seed dormancy. In: Bradford K, Nonogaki H (eds) Seed development, dormancy and germination, vol 27. Blackwell, Oxford, pp 72–112

    Chapter  Google Scholar 

  15. Batlla D, Benech-Arnold RL (2007) Predicting changes in dormancy level in weed seed soil banks: implications for weed management. Crop Prot 26:189–197

    Article  Google Scholar 

  16. Batlla D, Benech-Arnold RL (2010) Predicting changes in dormancy level in natural seed soil banks. Plant Mol Biol 73:3–13

    Article  CAS  Google Scholar 

  17. Batlla D, Benech-Arnold RL (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci Res 16:47–59

    Article  CAS  Google Scholar 

  18. Rodríguez MV, Barrero J, Corbineau F, Gubler F, Benech-Arnold RL (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci Res 25(2):99–119

    Article  Google Scholar 

  19. Corbineau F, Bagniol S, Côme D (1990) Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Israel J Bot 39:313–325

    CAS  Google Scholar 

  20. Corbineau F, Côme D (1987) Regulation de las semences de tournesol par l’éthylene. In: Annales ANPP (ed) 2ème Colloque sur les substances de croissance et leurs utilisations en agriculture, vol 1. Association Nationale de Protection des Plantes, Paris, pp 271–282

    Google Scholar 

  21. Cseresnyes Z (1979) Studies on the duration of dormancy and methods of determining the germination of dormant seeds of Helianthus annuus. Seed Sci Technol 7:179–188

    Google Scholar 

  22. Bodrone MP, Rodríguez MV, Arisnabarreta S, Batlla D (2017) Maternal environment and dormancy in sunflower: the effect of temperature during fruit development. Eur J Agron 82:93–103

    Article  Google Scholar 

  23. Corbineau F (1987) La germination des semences de tournesol et sa regulation par l’éthylene. CR Acad Sci Agr Fr 266:477–479

    Google Scholar 

  24. Dominguez CP, Batlla D, Rodríguez MV, Windauer LB, Gerbaldo M, Benech-Arnold RL (2016) Pericarp-imposed dormancy in sunflower: physiological basis, impact on crop emergence, and removal at an industrial scale. Crop Sci 56(2):716–726

    Article  CAS  Google Scholar 

  25. Le Page-Degivry MT, Barthe P, Garello G (1990) Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiol 92:1164–1168

    Article  Google Scholar 

  26. Le Page-Degivry MT, Garello G (1992) In situ abscisic acid synthesis. A requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiol 98:1386–1390

    Article  Google Scholar 

  27. Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism of seed dormancy alleviation. Plant J 50:452–465

    Article  CAS  Google Scholar 

  28. Oracz K, El-Maarouf BH, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465

    Article  CAS  Google Scholar 

  29. Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208

    Article  CAS  Google Scholar 

  30. Gao F, Rampitsch C, Chitnis VR, Humphreys GD, Jordan MC, Ayele BT (2013) Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.) Plant Biotechnol J 11(8):921–932

    Article  CAS  Google Scholar 

  31. El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77

    Article  Google Scholar 

  32. Abeles FB (1986) Role of ethylene in Lactuca sativa cv. Grand rapids seed germination. Plant Physiol 81:780–787

    Article  CAS  Google Scholar 

  33. Ketring DL (1977) Ethylene and seed germination. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination. Elsevier/North Holland Biomedical Press, Amsterdam, pp 157–178

    Google Scholar 

  34. Srivastava AK, Dey SC (1982) Physiology of seed dormancy in sunflower. Acta Agron Acad Sci Hung 31:70–80

    CAS  Google Scholar 

  35. Bagniol S (1987) Mise en évidence de l’intervention de l’ethylene dans la germination et la dormance des semences de tournesol (Helianthus annuus L.). Diplôme d’Ëtudes Approfondies, Université Pierre et Marie Curie, Paris

    Google Scholar 

  36. Seiler GJ (1998) Seed maturity, storage time and temperature, and media treatment effects on germination of two wild sunflowers. Agron J 90:221–226

    Article  Google Scholar 

  37. Oracz K, El Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: crosstalk with ethylene signaling pathway. J Exp Bot 59:2241–2251

    Article  CAS  Google Scholar 

  38. Benech-Arnold RL, Giallorenzi MC, Frank J, Rodriguez V (1999) Termination of hull-imposed dormancy in barley is correlated with changes in embryonic ABA content and sensitivity. Seed Sci Res 9:39–47

    Article  Google Scholar 

  39. Lenoir C, Corbineau F, Come D (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiol Plant 68:301–307

    Article  CAS  Google Scholar 

  40. Corbineau F, Poljakoff-Mayber A, Côme D (1991) Responsiveness to abscisic acid of embryos of dormant oat (Avena sativa) seeds. Involvement of ABA-inducible proteins. Physiol Plant 83:1–6

    Article  CAS  Google Scholar 

  41. Wang M, van der Meulen RM, Visser K, Van Schaik H-P, Van Duijn B, de Boer AH (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8:129–137

    Article  CAS  Google Scholar 

  42. Benech-Arnold RL, Gualano NA, Leymarie J, Come D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57:1423–1430

    Article  CAS  Google Scholar 

  43. Mendiondo GM, Leymarie J, Farrant J, Corbineau F, Benech-Arnold RL (2010) Differential expression of abscisic acid metabolism and signaling genes induced by seed covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Sci Res 20:69–77

    Article  CAS  Google Scholar 

  44. Biddulph TB, Plummer JA, Setter TL, Mares DJ (2008) Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field. Field Crop Res 107:116–128

    Article  Google Scholar 

  45. Steinbach HS, Benech-Arnold RL, Kristof G, Sánchez RA, Marcucci-Poltri S (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and sprouting-susceptible varieties. J Exp Bot 46:701–709

    Article  CAS  Google Scholar 

  46. Steinbach HS, Benech-Arnold RL, Sánchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113:149–154

    Article  CAS  Google Scholar 

  47. Rodríguez MV, Mendiondo GM, Maskin L, Gudesblat GE, Iusem ND, Benech-Arnold RL (2009) Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Ann Bot 104:975–985

    Article  Google Scholar 

  48. Gao FY, Ren GJ, Lu XJ, Sun SX, Li HJ, Gao YM, Luo H, Yan WG, Zhang YZ (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breed 127:268–273

    Article  Google Scholar 

  49. Kumar A, Kumar J, Singh E, Garg T, Chhuneja P, Balyan HS, Gupta PK (2009) QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177:114–122

    Article  CAS  Google Scholar 

  50. Lohwasser U, Roder MS, Borner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.) Euphytica 143:247–249

    Article  CAS  Google Scholar 

  51. Zanetti S, Winzeler M, Keller M, Keller B, Messmer M (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Sci 40:1406–1417

    Article  CAS  Google Scholar 

  52. Cantoro R, Fernández LG, Cervigni GDL, Rodríguez MV, Gieco JO, Paniego N, Heinz RA, Benech-Arnold RL (2016) Seed dormancy QTL identification across a Sorghum bicolor segregating population. Euphytica 211:41–56

    Article  CAS  Google Scholar 

  53. Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67(14):4169–4178

    Article  CAS  Google Scholar 

  54. Del Fueyo P, Sánchez RA, Benech-Arnold RL (2003) Seed longevity in two sorghum varieties with contrasting dormancy level prior to harvest. Seed Sci Technol 31:639–650

    Article  Google Scholar 

  55. Gualano NA, Del Fueyo PA, Benech-Arnold RL (2014) Potential longevity (Ki) of malting barley (Hordeum vulgare L.) grain lots relates to their degree of pre-germination assessed through different industrial quality parameters. J Cereal Sci 60:222–228

    Article  CAS  Google Scholar 

  56. Finkelstein RR, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  CAS  Google Scholar 

  57. Ji HS, Chu SH, Jiang W, Cho YI, Hahn JH, Eun MY, McCouch SR, Koh HJ (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173:995–1005

    Article  CAS  Google Scholar 

  58. Mares DJ, Mrva K, Cheong J et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    Article  CAS  Google Scholar 

  59. Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    Article  CAS  Google Scholar 

  60. Rodríguez MV, Margineda M, González-Martín JF, Insáusti P, Benech-Arnold RL (2001) Predicting pre-harvest sprouting susceptibility in barley: a model based on temperature during grain filling. Agron J 93:1071–1079

    Article  Google Scholar 

  61. Gualano NA, Benech-Arnold RL (2009a) Predicting pre-harvest sprouting susceptibility in barley: looking for “sensitivity windows” to temperature throughout grain filling in various commercial cultivars. Field Crops Res 114:35–44

    Article  Google Scholar 

  62. Buhler DD, Hartzler RG, Forcella F (1997) Implications of weed seedbank dynamics to weed management. Weed Sci 45:329–336

    CAS  Google Scholar 

  63. Forcella F, Benech-Arnold RL, Sánchez RA, Ghersa CM (2000) Modelling seedling emergence. Field Crop Res 67:123–139

    Article  Google Scholar 

  64. Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crop Res 67:105–122

    Article  Google Scholar 

  65. Malavert C, Batlla D, Benech-Arnold RL (2017) Temperature-dependent regulation of induction into secondary dormancy of Polygonum aviculare L. seeds: a quantitative analysis. Ecol Model 352:128–138

    Article  Google Scholar 

  66. Bair NB, Meyer SE, Allen PS (2006) A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. Seed Sci Res 16:17–28

    Article  Google Scholar 

  67. Batlla D, Agostinelli A (2017) Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: a quantitative analysis using the hydrotime model. Seed Sci Res 27(3):231–242

    Article  CAS  Google Scholar 

  68. Karssen CM (1982) Seasonal patterns of dormancy in weed seeds. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam, pp 243–270

    Google Scholar 

  69. Benech-Arnold R, Ghersa C, Sánchez R, García Fernandez A (1988) The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. regulation of germination under leaf canopies. Funct Ecol 2:311–318

    Article  Google Scholar 

  70. Ghersa CM, Benech-Arnold RL, Martinez Ghersa MA (1992) The role of fluctuating temperatures in germination and establishment of Sorghum halepense (L.) Pers. II. Regulation of germination at increasing depths. Funct Ecol 6:460–468

    Article  Google Scholar 

  71. Dyer WE (1995) Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci 43:498–503

    CAS  Google Scholar 

  72. Ghersa CM, Martinez-Ghersa MA, Benech-Arnold RL (1997) The use of seed dormancy to improve grain production. J Prod Agric 10:111–117

    Article  Google Scholar 

  73. Batlla D, Benech-Arnold RL (2014) Weed seed germination and the light environment: implications for weed management. Weed Biol Manag 14:77–87

    Article  Google Scholar 

  74. Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol 33:481–518

    Article  CAS  Google Scholar 

  75. Kruk B, Insausti P, Razul A, Benech-Arnold RL (2006) Light and thermal environments as modified by a wheat crop: effects on weed seed germination. J Appl Ecol 43:227–236

    Article  Google Scholar 

  76. Juroszek P, Gerhards R (2004) Photocontrol of weeds. J Agronom Crop Sci 190:402–415

    Article  Google Scholar 

  77. Scopel AL, Ballaré CL, Sánchez RA (1991) Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environ 14:501–508

    Article  Google Scholar 

  78. Batlla D, Verges V, Benech-Arnold RL (2003) A quantitative analysis of seed responses to cycle-doses of fluctuating temperatures in relation to dormancy level. Development of a thermal-time model for Polygonum aviculare L. seeds. Seed Sci Res 13:197–207

    Article  Google Scholar 

  79. Batlla D, Benech-Arnold RL (2005) Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytol 165:445–452

    Article  Google Scholar 

  80. Casal JJ, Sánchez RA (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329

    Article  CAS  Google Scholar 

  81. Forcella F (1998) Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci Res 8:201–209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto L. Benech-Arnold .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Benech-Arnold, R.L., Verónica Rodriguez, M., Batlla, D. (2018). Seed Dormancy and Agriculture and Physiology. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_192-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_192-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Seed Dormancy and Agriculture and Physiology
    Published:
    27 March 2018

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_192-4

  2. Original

    Seed Dormancy and Agriculture, Physiology
    Published:
    13 March 2015

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_192-3