Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

PEM Fuel Cell Materials: Costs, Performance and Durability

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_152-3


Bipolar plate

Forms the connection between MEAs in a fuel cell stack. The bipolar plate includes the gas flow channels and may also include cooling channels. Bipolar plates are also called flow plates.


The gradual loss of performance. Irreversible degradation is due to change of materials properties. Reversible degradation can be caused by non-optimal operating conditions. Quantitatively, the degradation can be expressed as a voltage decay rate.


The capability of the fuel cell to operate in the operating window with limited loss of performance.


The number of hours that a fuel cell can be operated in the operating window with a pre-defined performance loss relative to the initial performance.


Membrane electrode assembly is the result of joining two electrodes and the electrolytic membrane together. Usually, the gas diffusion media are considered to be part of the MEA.

Operating window

The range of conditions in which the PEMFC can be stably...

This is a preview of subscription content, log in to check access


Primary Literature

  1. 1.
    US Department of Energy (2007) Multi-year research, development and demonstration plan, hydrogen, fuel cells & infrastructure technologies program. DOE/GO-102007-2430Google Scholar
  2. 2.
    de Bruijn FA, Makkus RC, Mallant RKAM, Janssen GJM (2007) Materials for state-of-the-art PEM fuel cells, and their suitability for operation above 100°C. In: Zhao T, Kreuer KD, Nguyen T (eds) Advances in fuel cells. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140:1041–1047CrossRefGoogle Scholar
  4. 4.
    Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127:162–171CrossRefGoogle Scholar
  5. 5.
    TIAX LLC (2003) Platinum availability and economics for PEMFC commercialization, DOE report number: DE-FC04-01AL67601Google Scholar
  6. 6.
    Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cell Part I. The cathode challenges. Platin Met Rev 46:3–14Google Scholar
  7. 7.
    Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40CrossRefGoogle Scholar
  8. 8.
    Stumper J, Stone C (2008) Recent advances in fuel cell technology at Ballard. J Power Sources 176:468–476CrossRefGoogle Scholar
  9. 9.
    Janssen GJM (2001) A phenomenological model of water transport in a proton-exchange-membrane fuel cell. J Electrochem Soc 148:A1313–A1323CrossRefGoogle Scholar
  10. 10.
    Weber AZ, Newman J (2005) Effects of microporous layers in polymer electrolyte fuel cells. J Electrochem Soc 152:A677–A688CrossRefGoogle Scholar
  11. 11.
    Hurvitz N (2008) An in-situ, real-time gas humidity sensor for fuel cells, fuel cells durability and performance. The Knowledge Press, Brookline, pp 231–244Google Scholar
  12. 12.
    Satayapal S (2009) Overview of hydrogen and fuel cell activities, 27-10-2009. Fuel Cells & Hydrogen Joint Undertaking Stakeholders General Assembly, BrusselsGoogle Scholar
  13. 13.
    Ernst WD, Stone C, Wheeler D (2009) Fuel cell system cost for transportation-2008 Cost Estimate, NREL/BK-6A1-45457Google Scholar
  14. 14.
    Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo NT, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:446–454CrossRefGoogle Scholar
  15. 15.
    Yamazaki O, Oomori Y, Shintaku H, Tabata T (2005) Evaluation study of PEFC single cell at Osaka gas, 2005 fuel cell seminar abstracts. Courtesy Associates, Washington, DCGoogle Scholar
  16. 16.
    Huth H (2008) Volkswagen’s high temperature polymer electrolyte fuel cell. In: 4th annual international conference fuel cells durability and performance, Cambridge, 9-12-2008Google Scholar
  17. 17.
    Perti D (2009) DuPont next generation membrane and membrane electrode assembly development. In: FC Expo 2009, TokyoGoogle Scholar
  18. 18.
    Johnson WB, Bazkowski C, Berta T, Crum M, Greene L, Kunitz B, Mao H, Priester S, Rudolph J, Ryan K, Seligura C (2011) MEA degradation issues opportunities and challenges using thin, reinforced polymer electrolyte membranes. In: 2nd international workshop on degradation issues on fuel cells, Thessaloniki, 21–23 Sept 2011Google Scholar
  19. 19.
    Hicks MT (2006) MEA and stack durability for PEM fuel cells. DOE hydrogen program FY 2006 annual progress report, Washington, DC pp 722–726Google Scholar
  20. 20.
    Sone Y, Ekdunge P, Simonsson D (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259CrossRefGoogle Scholar
  21. 21.
    Maalouf M, Pyle B, Sun CN, Wu D, Paddison SJ, Schaberg M, Emery M, Lochhaas KH, Hamrock SJ, Ghassemi H, Zawodzinski TA (2009) Proton exchange membranes for high temperature fuel cells: equivalent weight and end group effects on conductivity. ECS Trans 25:1473–1481CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Hamrock S (2009) Membranes and MEAs for dry, hot operating conditions. DOE hydrogen programme FY 2009 annual progress report, Washington, DC pp 1042–1047Google Scholar
  24. 24.
    Cleghorn S, Griffith M, Liu W, Pires J, Kolde J (2007) Gore’s development path to a commercial automotive membrane electrode assembly. 2007 fuel cell seminar. Courtesy Associates, Washington, DCGoogle Scholar
  25. 25.
    Zhang YM, Li L, Tang J, Bauer B, Zhang W, Gao HR, Taillades-Jacquin M, Jones DJ, Roziere J, Lebedeva N, Mallant R (2009) Development of covalently cross-linked and composite perfluorosulfonic acid membranes. ECS Trans 25:1469–1472CrossRefGoogle Scholar
  26. 26.
    Jones DJ, Rozière J (2003) Inorganic/organic composite membranes. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 447–455Google Scholar
  27. 27.
    Kerres J (2005) Blended and cross-linked Ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–240CrossRefGoogle Scholar
  28. 28.
    Aoki M, Asano N, Miyatake K, Uchida H, Watanabe M (2006) Durability of sulfonated polyimide membrane evaluated by long-term polymer electrolyte fuel cell operation. J Electrochem Soc 153:A1154–A1158CrossRefGoogle Scholar
  29. 29.
    de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys Chem Chem Phys 11:3305–3312CrossRefGoogle Scholar
  30. 30.
    FumaPem – High performance membranes for fuel cells. Products section of company website www.fumatech.com
  31. 31.
    Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171CrossRefGoogle Scholar
  32. 32.
    Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Anhydrous polymeric proton conductors based on imidazole functionalized polysiloxane. Fuel Cells 6:237–250CrossRefGoogle Scholar
  33. 33.
    Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Mater 16:329–337CrossRefGoogle Scholar
  34. 34.
    Bozkurt A, Karadedeli B (2007) Copolymers of 4(5)-vinylimidazole and ethyleneglycol methacrylate phosphate: synthesis and proton conductivity properties. React Funct Polym 67:348–354CrossRefGoogle Scholar
  35. 35.
    Steininger H, Schuster M, Kreuer KD, Maier J (2006) Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes. Solid State Ionics 177:2457–2462CrossRefGoogle Scholar
  36. 36.
    Bozkurt A, Meyer WH, Gutmann J, Wegner G (2003) Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics 164:169–176CrossRefGoogle Scholar
  37. 37.
    Seel DC, Benicewicz BC, Xiao L, Schmidt TJ (2009) High-temperature polybenzimidazole-based membranes. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 5. Wiley, Chichester, pp 300–312Google Scholar
  38. 38.
    PBI/H3PO4 fuel cell starts up at room temperature. Fuel Cells Bulletin November 2008, p 10Google Scholar
  39. 39.
    Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRefGoogle Scholar
  40. 40.
    Ahluwalia RK, Wang X (2006) Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. J Power Sources 162:502–512CrossRefGoogle Scholar
  41. 41.
    Oszcipok M, Hakenjos A, Riemann D, Hebling C (2007) Start up and freezing processes in PEM fuel cells. Fuel Cells 7:135–141CrossRefGoogle Scholar
  42. 42.
    Gebert M, Hoehlein B, Stolten D (2004) Benchmark cost analysis of main PEFC ionomer membrane solutions. J Fuel Cell Sci Technol 1:56CrossRefGoogle Scholar
  43. 43.
    Springer TE, Wilson MS, Gottesfeld S (1993) Modeling and experimental diagnostics in polymer electrolyte fuel cells. J Electrochem Soc 140:3513–3526CrossRefGoogle Scholar
  44. 44.
    Mathias MF, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 515–537Google Scholar
  45. 45.
    Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154:B631–B635CrossRefGoogle Scholar
  46. 46.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35CrossRefGoogle Scholar
  47. 47.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229CrossRefGoogle Scholar
  48. 48.
    Bonakdarpour A, Stevens K, Vernstrom GD, Atanasoski R, Schmoeckel AK, Debe MK, Dahn JR (2007) Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochim Acta 53:688–694CrossRefGoogle Scholar
  49. 49.
    Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011CrossRefGoogle Scholar
  50. 50.
    Debe MK (2003) Novel catalysts, catalyst support and catalyst coated membrane methods. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 576–590Google Scholar
  51. 51.
    Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowsk A (2008) Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20:2444–2454CrossRefGoogle Scholar
  52. 52.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  53. 53.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rosswmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  54. 54.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  55. 55.
    Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sources 160:957–968CrossRefGoogle Scholar
  56. 56.
    Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224CrossRefGoogle Scholar
  57. 57.
    Murthi VS (2009) Highly dispersed alloy catalyst for durability. DOE hydrogen programme FY 2009 annual progress report, US DOE in Washington, DC, pp 1075–1080Google Scholar
  58. 58.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262CrossRefGoogle Scholar
  59. 59.
    Ball SC, Burton SL, Fisher J, ÓMalley R, Tessier BC, Theobald B, Thompsett D, Zhou WP, Su D, Zhu Y, Adzic R (2009) Structure and activity of novel Pt core-shell catalysts for the oxygen reduction reaction. ECS Trans 25:1023–1036CrossRefGoogle Scholar
  60. 60.
    Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186: 261–267CrossRefGoogle Scholar
  61. 61.
    Strasser P (2009) Dealloyed Pt bimetallic electrocatalysts for oxygen reduction. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 5. Wiley, Chichester, pp 30–47Google Scholar
  62. 62.
    Wang X, Kariuki N, Niyogi S, Smith MC, Myers DJ, Hofmann T, Zhang Y, Bar M, Heske C (2008) Bimetallic palladium-base metal nanoparticle oxygen reduction electrocatalysts. ECS Trans 16:109–119CrossRefGoogle Scholar
  63. 63.
    Zhou Y, Holme T, Berry J, Ohno TR, Ginley D, ÓHayre R (2009) Dopant-induced electronic structure modification of HOPG surfaces: implications for high activity fuel cell catalysts. J Phys Chem C 114: 506–515CrossRefGoogle Scholar
  64. 64.
    Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59CrossRefGoogle Scholar
  65. 65.
    Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443: 63–66CrossRefGoogle Scholar
  66. 66.
    Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74. Washington, DCCrossRefGoogle Scholar
  67. 67.
    Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25:1299–1311CrossRefGoogle Scholar
  68. 68.
    Neyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, Gu W (2005) Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc 152:A1073–A1080CrossRefGoogle Scholar
  69. 69.
    Kocha SS (2003) Principles of MEA preparation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 538–565Google Scholar
  70. 70.
    Xie Z, Zhao X, Gazzarri J, Wang Q, Navessin T, Holdcroft S (2009) Identification of dominant transport mechanisms in PEMFC cathode catalyst layers operated under low RH. ECS Trans 25:1187–1192CrossRefGoogle Scholar
  71. 71.
    Quick C, Ritzinger D, Lehnert W, Hartnig C (2009) Characterization of water transport in gas diffusion media. J Power Sources 190:110–120CrossRefGoogle Scholar
  72. 72.
    Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297–1302CrossRefGoogle Scholar
  73. 73.
    Morikawa H, Kikushi H, Saito N (2009) Development and advances of a V-flow FC stack for FCX clarity. SAE Int J Engines 2:955–959CrossRefGoogle Scholar
  74. 74.
    Shimoi R, Aoyama T, Iiyama A (2009) Development of fuel cell stack durability based on actual vehicle test data: current status and future work. SAE Int J Engines 2:960–970CrossRefGoogle Scholar
  75. 75.
    Makkus RC, Janssen AHH, de Bruijn FA, Mallant RKAM (2000) Use of stainless steel for cost competitive bipolar plates in the SPFC. J Power Sources 86:274–282CrossRefGoogle Scholar
  76. 76.
    Suria OV, Bruno M, Bois P, Maggiore P, Cazzolato C (2009) Fuel size and weight reduction due to innovative metallic bipolar plates: Technical process details and improvements, SAE Technical Papers Series, pp 2009-01-1009Google Scholar
  77. 77.
    Brady MP, Yang B, Wang H, Turner JA, More KL, Wilson M, Garzon F (2006) The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. JOM 58:50–57CrossRefGoogle Scholar
  78. 78.
    Cho EA, Jeon US, Hong SA, Oh IH, Kang SG (2005) Performance of a 1-kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. J Power Sources 142:177–183CrossRefGoogle Scholar
  79. 79.
    Mepsted GO, Moore JM (2003) Performance and durability of bipolar plate materials. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 286–293Google Scholar
  80. 80.
    Joseph S, McClure JC, Sebastian PJ, Moreira J, Valenzuela E (2008) Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. J Power Sources 177:161–166CrossRefGoogle Scholar
  81. 81.
    Ahluwalia R, Wang X, Lasher S, Sinha J, Yang Y, Sriramulu S (2007) Performance of automotive fuel cell systems with nanostructured thin film catalysts, 2007 fuel cell seminar, 15-10-2007. Courtesy Associates, Washington, DCGoogle Scholar
  82. 82.
    Dobrovol’skii YA, Ukshe AE, Levchenko AE, Arkhangel’skii IV, Ionov SG, Avdeev VV, Aldoshin SM (2007) Materials for bipolar plates for proton-conducting membrane fuel cells. Russ J Gen Chem 77:752–765CrossRefGoogle Scholar
  83. 83.
    Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo N, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:4–455CrossRefGoogle Scholar
  84. 84.
    Schulze M, Knöri T, Schneider A, Gülzow E (2004) Degradation of sealings for PEFC test cells during fuel cell operation. J Power Sources 127:222–229CrossRefGoogle Scholar
  85. 85.
    Tan J, Chao YJ, Van Zee JW, Lee WK (2007) Degradation of elastomeric gasket materials in PEM fuel cells. Mater Sci Eng A 445-446:669–675CrossRefGoogle Scholar
  86. 86.
    Ralph TR, Barnwell DE, Bouwman PJ, Hodgkinson AJ, Petch MI, Pollington M (2008) Reinforced membrane durability in proton exchange membrane fuel cell stacks for automotive applications. J Electrochem Soc 155:B411–B422CrossRefGoogle Scholar
  87. 87.
    de Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22CrossRefGoogle Scholar
  88. 88.
    Noto H, Kondo M, Otake Y, Kato M (2009) Development of fuel cell hybrid vehicle by Toyota, SAE technical paper series, pp 2009-01-1002Google Scholar
  89. 89.
    Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276CrossRefGoogle Scholar
  90. 90.
    Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134CrossRefGoogle Scholar
  91. 91.
    Ferreira-Aparicio P, Chaparro AM, Gallardo B, Folgado M, Daza L (2009) Anode degradation effects in PEMFC stacks by localized fuel starvation, 2009 fuel cell seminar. Courtesy Associates, Washington, DCGoogle Scholar
  92. 92.
    Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180:1–14CrossRefGoogle Scholar
  93. 93.
    Baldasano JM, Valera E, Jimenez P (2003) Air quality data from large cities. Sci Total Environ 307:141–165CrossRefGoogle Scholar
  94. 94.
    Huang W, Tan J, Kan H, Zhao N, Song W, Song G, Chen G, Jiang L, Jiang C, Chen R, Chen B (2009) Visibility, air quality and daily mortality in Shanghai, China. Sci Total Environ 407:3295–3300CrossRefGoogle Scholar
  95. 95.
    A Report on the achievements and learnings from the HyFleet: CUTE project 2006–2009Google Scholar
  96. 96.
    Narusawa K, Myong K, Murooka K, Kamiya Y (2007) A study regarding effects of proton exchange membrane fuel cell poisoning due to impurities on fuel cell performance, SAE technical paper series, pp 2007-01-0698Google Scholar
  97. 97.
    Adjemian K, Iiyama A (2008) MEA development for automotive applications, fuel cells durability and performance, 3rd edn. The Knowledge Press, Inc., Brookline, pp 5–16Google Scholar
  98. 98.
    Veldhuis JBJ, de Bruijn FA, Mallant RKAM (1998) Fuel cell seminar abstracts, 16-11-1998. Courtesy Associates, Washington, DC, p 598Google Scholar
  99. 99.
    Knights SD, Jia N, Chuy C, Zhang J (2005) Fuel cell seminar abstracts, 14-11-2005. Courtesy associates, Washington, DCGoogle Scholar
  100. 100.
    Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu ZS, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J Power Sources 165:739–756CrossRefGoogle Scholar
  101. 101.
    Kennedy DM, Cahela DR, Zhu WH, Westrom KC, Nelms RM, Tatarchuk BJ (2007) Fuel cell cathode air filters: methodologies for design and optimization. J Power Sources 168:391–399CrossRefGoogle Scholar
  102. 102.
    Matsuda Y (2009) Accumulation behavior of impurities in fuel cell hydrogen circulation system, 2009 fuel cell seminar, 16-11-2009. Courtesy associates, Washington, DCGoogle Scholar
  103. 103.
    Papasavva S (2005) Developing hydrogen (H2) specification guidelines for proton exchange membrane (PEM) fuel cell vehicles, SAE technical series papers, pp 2005-01-0011Google Scholar
  104. 104.
    Recupero V, Pino L, Vita A, Cipiti F, Cordaro M, Lagana M (2005) Development of a LPG fuel processor for PEFC systems: Laboratory scale evaluation of autothermal reforming and preferential oxidation subunits. Int J Hydrog Energy 30:963–971CrossRefGoogle Scholar
  105. 105.
    de Bruijn FA, Rietveld G, van den Brink RW (2007) Hydrogen production and fuel cells as the bridging technologies towards a sustainable energy system. In: Centi G, Santen RA (eds) Catalysis for renewables. Wiley-VCH, Weinheim, pp 299–336CrossRefGoogle Scholar
  106. 106.
    Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in polymer electrolyte fuel cells operational at temperatures up to 200°C. J Electrochem Soc 150:A1599–A1605CrossRefGoogle Scholar
  107. 107.
    Wipke K, Sprik S, Kurtz J, Ramsden T (2009) Controlled hydrogen fleet and infrastructure demonstration and validation project, NRELNREL/TP-560-46679Google Scholar
  108. 108.
    Mallant RKAM, Lebedeva NP, Zhang YM, Li L, Tang JK, Bukhtiyarov VI, Romanenko AV, Voropaev I, Bauer B, Zhang W, Jones DJ, Rozière J, Gao HR (2009) Significant steps towards medium temperature/low RH PEMFC, 2009 fuel cell seminar. Courtesy Associates, Washington, DCGoogle Scholar
  109. 109.
    Bono T, Kizaki M, Mizuno H, Nonobe Y, Takahashi T, Matsumoto T, Kobayashi N (2010) Development of new Toyota FCHV-adv fuel cell system. SAE Int J Engines 2:948–954CrossRefGoogle Scholar
  110. 110.
    Power backup solutions for telecom and related networks. Dantherm Power Catalogue 2008Google Scholar
  111. 111.
    Ferreira PJ, la Ó GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152:A2256–A2271CrossRefGoogle Scholar
  112. 112.
    Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152:A1011–A1020CrossRefGoogle Scholar
  113. 113.
    Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M (2007) Detection of Pt[sup z+] Ions and Pt nanoparticles Inside the membrane of a used PEMFC. J Electrochem Soc 154:B96–B105CrossRefGoogle Scholar
  114. 114.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305CrossRefGoogle Scholar
  115. 115.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, New YorkGoogle Scholar
  116. 116.
    Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527CrossRefGoogle Scholar
  117. 117.
    Virkar AN, Zhou Y (2007) Mechanism of catalyst degradation in proton exchange membrane fuel cells. J Electrochem Soc 154:B540–B547CrossRefGoogle Scholar
  118. 118.
    Dam VAT, de Bruijn FA (2007) The stability of PEMFC electrodes. J Electrochem Soc 154:B494–B499CrossRefGoogle Scholar
  119. 119.
    Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution. Electrochem Solid-State Lett 9:A225–A227CrossRefGoogle Scholar
  120. 120.
    Kawahara S, Mitsushima S, Ota K, Kamiya N (2006) Deterioration of Pt catalyst under potential cycling. ECS Trans 3:625–631CrossRefGoogle Scholar
  121. 121.
    Kawahara S, Mitsushima S, Ota K, Kamiya N (2006) Comsumption of Pt catalyst under electrolysis and fuel cell operation. ECS Trans 1:85–100CrossRefGoogle Scholar
  122. 122.
    Burke LD, Buckley DT (1994) Anomalous stability of acid-grown hydrous platinum oxide films in aqueous media. J Electroanal Chem 366:239–251CrossRefGoogle Scholar
  123. 123.
    Burke LD, ÓDwyer KJ (1992) Multilayer oxide growth on Pt under potential cycling conditions. Electrochim Acta 37:43–50CrossRefGoogle Scholar
  124. 124.
    Birss VI, Chang M, Segal J (1993) Platinum oxide film formation-reduction: an in-situ mass measurement study. J Electroanal Chem 355:181–191CrossRefGoogle Scholar
  125. 125.
    Nagy Z, You H (2002) Applications of surface X-ray scattering to electrochemistry problems. Electrochim Acta 47:3037–3055CrossRefGoogle Scholar
  126. 126.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  127. 127.
    Guilminot E, Corcella A, Chatenet M, Maillard F, Charlot F, Berthome G, Iojoiu C, Sanchez JY, Rossinot E, Claude E (2007) Membrane and active layer degradation upon PEMFC steady-state operation. J Electrochem Soc 154:B1106–B1114CrossRefGoogle Scholar
  128. 128.
    Honji A, Mori T, Tamura K, Hishinuma M (1988) Agglomeration of platinum particles supported on carbon in phosphoric acid. J Electrochem Soc 135: 355–359CrossRefGoogle Scholar
  129. 129.
    Ascarelli P, Contini V, Giorgi R (2002) Formation process of nanocrystalline materials from x-ray diffraction profile analysis: application to platinum catalysts. J Appl Phys 91:4556–4561CrossRefGoogle Scholar
  130. 130.
    Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81CrossRefGoogle Scholar
  131. 131.
    Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage. Electrochem Soc Interface 14(Fall):24–35Google Scholar
  132. 132.
    Haas HR, Davis MT (2009) Electrode and catalyst durability requirements in automotive PEM applications: technology status of a recent MEA design and next generation challenges. ECS Trans 25: 1623–1631CrossRefGoogle Scholar
  133. 133.
    Schulze M, Wagner N, Kaz T, Friedrich KA (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim Acta 52:2328–2336CrossRefGoogle Scholar
  134. 134.
    Janssen GJM, de Heer MP, Papageorgopoulos DC (2004) Bilayer anodes for improved reformate tolerance of PEM fuel cells. Fuel Cells 4:169–174CrossRefGoogle Scholar
  135. 135.
    Yu H, Hou Z, Yi B, Lin Z (2002) Composite anode for CO tolerance proton exchange membrane fuel cells. J Power Sources 105:52–57CrossRefGoogle Scholar
  136. 136.
    Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059CrossRefGoogle Scholar
  137. 137.
    Lebedeva NP, Rosca V, Janssen GJM (2010) CO oxidation and CO2 reduction on carbon supported PtWO3 catalyst. Electrochim Acta 55:7659–7668CrossRefGoogle Scholar
  138. 138.
    de Bruijn FA, Papageorgopoulos DC, Sitters EF, Janssen GJM (2002) The influence of carbon dioxide on PEM fuel cells anodes. J Power Sources 110: 117–124CrossRefGoogle Scholar
  139. 139.
    Janssen GJM (2004) Modelling study of CO2 poisoning on PEMFC anodes. J Power Sources 136: 45–54CrossRefGoogle Scholar
  140. 140.
    Ahluwalia RK, Wang X (2008) Effect of CO and CO2 impurities on performance of direct hydrogen polymer-electrolyte fuel cells. J Power Sources 180:122–131CrossRefGoogle Scholar
  141. 141.
    Mohtadi R, Lee W, Van Zee JW (2004) Assessing durability of cathodes exposed to common air impurities. J Power Sources 138:216–225CrossRefGoogle Scholar
  142. 142.
    Paulus UA, Schmidt TJ, Gasteiger HA (2003) Poisons for the O2 reduction reaction. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 2. Wiley, Chichester, pp 555–569Google Scholar
  143. 143.
    Kinoshita K (1988) Carbon. Electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  144. 144.
    Giordano N, Antonucci PL, Passalacqua E, Pino L, Arico AS, Kinoshita K (1991) Relationship between physicochemical properties and electrooxidation behaviour of carbon materials. Electrochim Acta 36:1931–1935CrossRefGoogle Scholar
  145. 145.
    Ball SC, Hudson SL, Thompsett D, Theobald B (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hols regimes at a range of temperatures. J Power Sources 171:18–15CrossRefGoogle Scholar
  146. 146.
    Garland N, Benjamin T, Kopasz J (2007) DOE fuel cell program: durability technical targets and testing protocols. ECS Trans 11:923–931CrossRefGoogle Scholar
  147. 147.
    Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188CrossRefGoogle Scholar
  148. 148.
    Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts12. J Electrochem Soc 152:A2309–A2315CrossRefGoogle Scholar
  149. 149.
    Cai M, Ruthkosky MS, Merzougui B, Swathirajan S, Balogh MP, Oh SE (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160:977–986CrossRefGoogle Scholar
  150. 150.
    Shao Y, Yin G, Gao Y, Shi P (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097CrossRefGoogle Scholar
  151. 151.
    Tang Z, Ng HY, Lin J, Wee ATS, Chua DHC (2010) Pt/CNT-based electrodes with high electrochemical activity and stability for proton exchange membrane fuel cells. J Electrochem Soc 157:B245–B250CrossRefGoogle Scholar
  152. 152.
    Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage M, Gasteiger H, Abbott J (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5:302–308CrossRefGoogle Scholar
  153. 153.
    St-Pierre J, Wilkinson DP, Knights SD, Bos M (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J New Mater Electrochem Syst 3:99–106Google Scholar
  154. 154.
    Wood D, Davey J, Garzon F, Atanassov P, Borup R (2005) Mass-transport phenomena and long-term performance limitations in H2-air PEMFC durability testing, 2005 fuel cell seminar abstracts, 14-11-2005. Courtesy Associates, Washington, DCGoogle Scholar
  155. 155.
    Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M (2000) Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 86:250–254CrossRefGoogle Scholar
  156. 156.
    Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM (2004) Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 151:A1173–A1180CrossRefGoogle Scholar
  157. 157.
    de Bruijn FA, Dam VAT, Janssen GJM, Makkus RC (2009) Electrode degradation in PEMFCs as studied in model systems and PEMFC testing. ECS Trans 25:1835–1847CrossRefGoogle Scholar
  158. 158.
    Lee C, Merida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164:141–153CrossRefGoogle Scholar
  159. 159.
    Coms FD (2008) The chemistry of fuel cell membrane chemical degradation. ECS Trans 16:235–255CrossRefGoogle Scholar
  160. 160.
    Liu H, Gasteiger HA, LaConti AB, Zhang J (2006) Factors impacting chemical degradation of perfluorinated sulfonic acid ionomers. ECS Trans 1:283–293CrossRefGoogle Scholar
  161. 161.
    Mittal VO, Kunz HR, Fenton JM (2007) Membrane degradation mechanisms in PEMFCs. J Electrochem Soc 154:B652–B656CrossRefGoogle Scholar
  162. 162.
    Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life20. J Power Sources 131:41–48CrossRefGoogle Scholar
  163. 163.
    Coms FD, Liu H, Owejan JE (2008) Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans 16:1735–1747CrossRefGoogle Scholar
  164. 164.
    Endoh E (2008) Development of highly durable PFSA membrane and MEA for PEMFC under high temperature and low humidity conditions. ECS Trans 16:1229–1240CrossRefGoogle Scholar
  165. 165.
    Trogadas P, Parrondo J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using free radical scavengers. ECS Trans 16: 1725–1733CrossRefGoogle Scholar
  166. 166.
    Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555CrossRefGoogle Scholar
  167. 167.
    Zhang L, Ma CS, Mukerjee S (2003) Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation. Electrochim Acta 48:1845–1859CrossRefGoogle Scholar
  168. 168.
    Schuster M, Kreuer KD, Andersen HT, Maier J (2007) Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 40:598–607CrossRefGoogle Scholar
  169. 169.
    Escobedo G, Raiford K, Nagarajan GS, Schwiebert KE (2006) Strategies for mitigation of PFSA polymer degradation in PEM fuel cells. ECS Trans 1:303–311CrossRefGoogle Scholar
  170. 170.
    Stone C, Calis GHM (2006) Improved composite membranes and related performance in commercial PEM fuel cells, 2006 fuel cell seminar abstracts. Courtesy Associates, Washington, DCGoogle Scholar
  171. 171.
    LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 3. Wiley, Chichester, pp 647–663Google Scholar
  172. 172.
    Silberstein MN, Boyce MC (2010) Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. J Power Sources 195: 5692–5706CrossRefGoogle Scholar
  173. 173.
    Liu W, Ruth K, Rusch G (2001) Membrane durability in PEM fuel cells. J New Mater Electrochem Syst 4:227–231Google Scholar
  174. 174.
    McDonald RC, Mittelsteadt CK, Thompson EL (2004) Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies. Fuel Cells 4:208–213CrossRefGoogle Scholar
  175. 175.
    Okada T (2003) Ionic Contaminants. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 3. Wiley, Chichester, pp 627–646Google Scholar
  176. 176.
    Davies DP, Adcock PL, Turpin M, Rowen SJ (2000) Bipolar plate materials for solid polymer fuel cells. J Appl Electrochem 30:101–105CrossRefGoogle Scholar
  177. 177.
    Gallagher KG, Wong DT, Fuller TF (2008) The effect of transient potential exposure on the electrochemical oxidation of carbon black in low-temperature fuel cells. J Electrochem Soc 155:B488–B493CrossRefGoogle Scholar
  178. 178.
    Frisch L (2001) PEM fuel cell stack sealing using silicone elastomers. Seal Technol 2001:7–9CrossRefGoogle Scholar
  179. 179.
    Du B, Guo R, Pollard R, Rodriguez D, Smith J, Elter J (2006) PEM fuel cells: status and challenges for commercial stationary power applications. JOM 58(8):45–49CrossRefGoogle Scholar
  180. 180.
    St-Pierre J, Jia N (2002) Succesful demonstration of Ballard PEMFCs for space shuttle applications. J New Mater Electrochem Syst 5:263Google Scholar

Books and Reviews

  1. Barbir F (2005) PEM fuel cells, theory and practice. Elsevier, AmsterdamGoogle Scholar
  2. Büchi FN, Inaba M, Schmidt TJ (eds) (2009) Polymer electrolyte fuel cell durability. Springer, New YorkGoogle Scholar
  3. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  4. Scherer GG (ed) (2008) Fuel cells I, advances in polymer science, vol 215. Springer, New YorkGoogle Scholar
  5. Scherer GG (ed) (2008) Fuel cells II, advances in polymer science, vol 216. Springer, New YorkGoogle Scholar
  6. Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Handbook of fuel cells, fundamental, technology and applications, 4th edn. Wiley, ChichesterGoogle Scholar
  7. Vielstich W, Yokokawa H, Gasteiger HA (eds) (2009) Handbook of fuel cells: advances in electrocatalysis, materials, diagnostics and durability, vol 5 & 6. Wiley, ChichesterGoogle Scholar
  8. Zhang J (ed) (2009) PEM fuel cell electrocatalysts and catalyst layers. Springer, New YorkGoogle Scholar
  9. Zhao TS, Kreuer KD, Van Nguyen T (eds) (2007) Advances in fuel cells I. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Energy Research Centre of the NetherlandsGroningenThe Netherlands
  2. 2.Energy and Sustainability Research Institute GroningenUniversity of GroningenGroningenThe Netherlands
  3. 3.Energy Research Centre of the NetherlandsPettenThe Netherlands