Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_151-3

Glossary

Automotive PEMFC

Proton exchange membrane fuel cell stacks used to power automotive vehicles typically using hydrogen as a fuel and ambient air as the oxidant

Electrocatalyst

The material used on the anode and cathode electrodes of fuel cells to catalyze the fuel oxidation and oxygen reduction reactions to produce electrical power and by-products of heat and water. Amount of electrocatalyst used in the anode or cathode of fuel cells is reported in units of mg/cm2

Fuel cell durability

A measure of the degradation of components of a fuel cell as well as the output power of the entire stack over time. Also defined in terms of the maximum life of the stack before failure or degradation rate of the fuel cell performance in μV/h

Fuel cell performance

The voltage produced by a fuel cell stack at a defined current density. A performance or polarization curve refers to a plot of the cell potential (V) versus current density (I) under specified conditions of pressure, temperature,...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Grove WR (1842) On gaseous voltaic battery. Philos Mag 3:417Google Scholar
  2. 2.
    Schonbein CF (1839) On the voltaic polarization of certain solid and fluid substances. Philos Mag 14:43Google Scholar
  3. 3.
    Mond L, Langer C (1889) A New Form of Gas Battery. Proc Roy Soc 46:296CrossRefGoogle Scholar
  4. 4.
    Jacques WW (1897) Electricity direct from coal. Harpers Mag 94:144–150Google Scholar
  5. 5.
    Baur E, Tobler J (1933) Brennstoffketten Z Elektrochem 39:169–180Google Scholar
  6. 6.
    Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) Peroixde rde, anion adsorption effect. J Electroanal Chem 508:41–47CrossRefGoogle Scholar
  7. 7.
    Tobler J (1933) Studien Über Knallgas-Ketten. Z Elektrochem 39:148Google Scholar
  8. 8.
    Nernst W (1904) Theorie der Reaktiongeschwindigkeit in heterogenen Systemen. Z Phys Chem 47:52Google Scholar
  9. 9.
    Tafel J, Emmert B (1905) Ueber die ursache der spontanen depression des kathodenpotntials bei der eletrolyse verduennter schwefelsaeure. Z Phys Chem 50:349–373Google Scholar
  10. 10.
    Liebhavsky HA, Cairns EJ (1968) Fuel cells and batteries. Wiley, New YorkGoogle Scholar
  11. 11.
    Vielstich W (1965) Fuel cells. Wiley-Interscience, LondonGoogle Scholar
  12. 12.
    Maget HJR (1967) In: Berger C (ed) Handbook of fuel cell technology. Prentice-Hall, Englewood Cliffs, pp 425–491Google Scholar
  13. 13.
    Liebhavsky HA, Grubb WT Jr (1961) The fuel cell in space. ARS J 31:1183–1190CrossRefGoogle Scholar
  14. 14.
    AFC A (2003) Alkaline fuel cells. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, New YorkGoogle Scholar
  15. 15.
    Kordesch KV (1978) 25 years of fuel cell development (1951–1976). J Electrochem Soc 125:77 C–91 CCrossRefGoogle Scholar
  16. 16.
    Grubb WTJ (1959) US Patent 2,913,511Google Scholar
  17. 17.
    Niedrach LW, Alford HR (1965) A new high-performance fuel cell employing conducting-porous-teflon electrodes and liquid electrolyte. J Elecrochem Soc 112:117CrossRefGoogle Scholar
  18. 18.
    Thomas CES (2007) Greenhouse gas results. http://www.cleancaroptions.com/html/greenhouse_gas_results.html
  19. 19.
  20. 20.
    IPCC (2007) The IPCC assessment reports. http://www.ipcc.ch/
  21. 21.
    Koppel T (1999) Powering the future: the ballard fuel cell and the race to change the world. Wiley, New YorkGoogle Scholar
  22. 22.
    Taub A (2009) The opportunity in electric transportation. http://www.ncsc.ncsu.edu/cleantransportation/docs/Events/2009_5-27_Taub_GM-EV.pdf
  23. 23.
    GreenCarCongress: GM highlights engineering advances with second generation fuel cell system and fifth generation stack; poised for production around 2015. http://www.greencarcongress.com/2009/09/gm-2gen-20090928.html
  24. 24.
    ChevyEquinox (2010) Chevy equinox fuel cell. http://www.gm.com/vehicles/innovation/fuel-cells/
  25. 25.
    AutoBlogGreen (2010) 2008 chevy equinox fuel cell. http://green.autoblog.com/photos/2008-chevrolet-equinox-fuel-cell/#380179
  26. 26.
    UTCPower (2010) UTC power: transportation\automotive. http://www.utcpower.com/fs/com/bin/fs_com_Page/0,11491,0151,00.html
  27. 27.
    F-cell M-BB-c (2010) 2010 mercedes-benz b-class f-cell. http://www.caranddriver.com/news/car/09q3/2010_mercedes-benz_b-class_f-cell-car_news
  28. 28.
    FCHV-adv T (2010) Fuel cell technology. http://www2.toyota.co.jp/en/tech/environment/fchv/
  29. 29.
    Pressroom T (2010) Toyota fuel cell vehicle demonstration program expands. http://pressroom.toyota.com/pr/tms/toyota/toyota-fuel-cell-vehicle-demonstration-151146.aspx
  30. 30.
    NissanHistory (2010) The history of Nissan’s fuel-cell vehicle development. http://www.nissan-global.com/EN/ENVIRONMENT/CAR/FUEL_BATTERY/DEVELOPMENT/FCV/index.html
  31. 31.
    Honda (2010) Honda: fuel cell electric vehicle. http://world.honda.com/FuelCell/
  32. 32.
    Uchimura M, Sugawara S, Suzuki Y, Zhang J, Kocha SS (2008) Electrocatalyst durability under simulated automotive drive cycles. ECS Trans 16:225–234CrossRefGoogle Scholar
  33. 33.
    Kocha SS (2003) Principles of mea preparation. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, New York, pp 538–565Google Scholar
  34. 34.
    Kocha SS, Yang DJ, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AICHE J 52:1916–1925CrossRefGoogle Scholar
  35. 35.
    Uchimura M, Kocha S (2007) The impact of cycle profile on PEMFC durability. ECS Trans 11:1215–1226CrossRefGoogle Scholar
  36. 36.
    Ohma A, Suga S, Yamamoto S, Shinohara K (2007) Membrane degradation behavior during OCV hold test. J Electrochem Soc 154:B757–B760CrossRefGoogle Scholar
  37. 37.
    Sugawara S, Maruyama T, Nagahara Y, Kocha SS, Shinohara K, Tsujita K, Mitsushima S, Ota K-i (2009) Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition. J Power Sources 187:324–331CrossRefGoogle Scholar
  38. 38.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for PEMFCS. Appl Catal B Environ 56:9–35CrossRefGoogle Scholar
  39. 39.
    Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Tao X, Yan SG, PT Y (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35Google Scholar
  40. 40.
    Uchimura M, Kocha SS (2007) The impact of oxides on activity and durability of PEMFCS. AIChE J. Abstract No. 295bGoogle Scholar
  41. 41.
    Uchimura M, Kocha SS (2008) The influence of Pt-oxide coverage on the ORR reaction order in PEMFCs. ECS meeting, Honolulu, 12–17 Oct 2008Google Scholar
  42. 42.
    Kocha SS, Gasteiger HA (2004) The use of Pt-alloy catalyst for cathodes of PEMFCS to enhance performance and achieve automotive cost targets. Fuel Cell Seminar, San AntonioGoogle Scholar
  43. 43.
    Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276CrossRefGoogle Scholar
  44. 44.
    Reiser CA, Yang D, Sawyer RD (2005) Procedure for shutting down a fuel cell system using air purge. US Patent 6,858,336, 22 Feb 2005Google Scholar
  45. 45.
    Reiser CA, Yang DJ, Sawyer RD (2005) Procedure for starting up a fuel cell system using a fuel purge. US Patent 7,410,712, 12 Aug 2008Google Scholar
  46. 46.
    Shimoi R, Aoyama T, Iiyama A (2009) Development of fuel cell stack durability based on actual vehicle test data: current status and future work. SAE International 2009-01-1014Google Scholar
  47. 47.
    Merzougui B, Halalay IC, Carpenter MK, Swathirajan S (2006) Conductive matrices for fuel cell electrodes. General motors, US Patent Application 20060251954Google Scholar
  48. 48.
  49. 49.
    Borup RL, Meyers JP, Pivovar B, Kim YS, Mukundan R, Garland N, Myers DJ, Wilson M, Garzon F, Wood DL, Zelenay P, More K, Stroh K, Zawodizinski TA, Boncella J, McGrath J, Inaba M, Miyatake K, Hori M, Ota K-i, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRefGoogle Scholar
  50. 50.
    Mohtadi R, Lee WK, Zee JWV (2004) So2 contamination. J Power Sources 138:216–225CrossRefGoogle Scholar
  51. 51.
    Nagahara Y, Sugwara S, Shinohara K (2008) The impact of air contaminants on PEMFC performance and durability. J Power Sources 182:422–488CrossRefGoogle Scholar
  52. 52.
    Kocha SS, Gasteiger HA (2004) In: Henry B (ed) Platinum alloy catalysts for PEMFCs. Gonzalez Convention Center, San Antonio. http://www.fuelcellseminar.com/past-conferences/2004.aspxGoogle Scholar
  53. 53.
  54. 54.
  55. 55.
  56. 56.
    Iiyama A, Shinohara K, Igushi S, Daimaru A (2009) Membrane and catalyst performance targets for automotive fuel cells. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells-advances in electrocatalysis, materials, diagnostics and durability. Wiley, ChichesterGoogle Scholar
  57. 57.
    Cleghorn S, Griffith M, Liu W, Pires J, Kolde J (2007) Gore’s development path to a commercial automotive membrane electrode assembly. http://www.fuelcellseminar.com/past-conferences/2007.aspx
  58. 58.
    McGrath J (2007) Advanced materials for proton exchange membranes. DOE Hydrogen Program Merit Review Presentation. http://www.hydrogen.energy.gov/pdfs/review07/fc_23_mcgrath.pdf
  59. 59.
    Luczak FJ (1976) Determination of d-band occupancy in pure metals and supported catalysts by measurement of the liii x-ray absorption threshold. J Catal 43:376–379CrossRefGoogle Scholar
  60. 60.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422CrossRefGoogle Scholar
  61. 61.
    Nagy Z, You H (2002) Applications of surface x-ray scattering to electrochemistry problems. Electrochim Acta 47:3037–3055CrossRefGoogle Scholar
  62. 62.
    Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–2302CrossRefGoogle Scholar
  63. 63.
  64. 64.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:494–497CrossRefGoogle Scholar
  65. 65.
    Markovic NM, Ross PN (2000) Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim Acta 45:4101–4115CrossRefGoogle Scholar
  66. 66.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRefGoogle Scholar
  67. 67.
    Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-cu and Pt-cu-co electrocatalysts for the oxygen reduction reaction. J Power Sources 186:261–267CrossRefGoogle Scholar
  68. 68.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Pt monolayer on noble metal-noble metal core core-shell nanoparticle electocatalysts for O2 reduction. J Phys Chem B 109:22701–22704CrossRefGoogle Scholar
  69. 69.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Pt-Pd core-shell. J Phys Chem B 108:10955CrossRefGoogle Scholar
  70. 70.
    Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179CrossRefGoogle Scholar
  71. 71.
    Zhang J, Sasaki R, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen reduction electrocatalysts using gold clusters. Science 315:220–222CrossRefGoogle Scholar
  72. 72.
    Adzic RR (2010) Contiguous platinum monolayer oxygen reduction electrocatalysts on high-stability-low-cost supports. http://www.hydrogen.energy.gov/pdfs/review10/fc009_adzic_2010_o_web.pdf
  73. 73.
    Bregoli LJ (1978) The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochim Acta 23:489–492CrossRefGoogle Scholar
  74. 74.
    Makharia R, Kocha SS, PT Y, Sweikart MA, Gu W, Wagner FT, Gasteiger HA (2006) Durable PEMFC electrode materials: requirements and benchmarking methodologies. ECS Trans 1:3–18CrossRefGoogle Scholar
  75. 75.
    Debe M (2005) Advanced meas for enhanced operating conditions, amenable to high volume manufacture. DOE hydrogen program review. http://www.hydrogen.energy.gov/pdfs/review05/fc3_debe.pdf
  76. 76.
    Debe M (2008) Advanced cathode catalysts and supports for pem fuel cells. http://www.hydrogen.energy.gov/pdfs/review08/fc_1_debe.pdf
  77. 77.
    Pivovar B (2010) Extended, continuous pt nanostructures in thick, dispersed electrodes. http://www.hydrogen.energy.gov/pdfs/review10/fc007_pivovar_2010_o_web.pdf
  78. 78.
    Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452CrossRefGoogle Scholar
  79. 79.
    Conway BE, Barnett B, Angerstein-Kozlowska H (1990) A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J Chem Phys 93:8361–8373CrossRefGoogle Scholar
  80. 80.
    Conway BE, Jerkiewicz G (1992) Surface orientation dependence of oxide film growth at platinum single crystals. J Electroanal Chem 339:123–146CrossRefGoogle Scholar
  81. 81.
    Bindra P, Clouser SJ, Yeager E (1979) Pt dissolution in concentrated phosphoric acid. J Electrochem Soc 126:1631CrossRefGoogle Scholar
  82. 82.
    Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells. Electrochem Solid-State Lett 9:A225–A227CrossRefGoogle Scholar
  83. 83.
    Wang X, Kariuki N, Vaughey JT, Goodpastor J, Kumar R, Myers DJ (2008) Bi-metallic Pd-cu oxygen reduction electrocatalysts. J Electrochem Soc 155:B602–B609CrossRefGoogle Scholar
  84. 84.
    Jaouen F, Charreteur F, Dodolet JP (2006) C-n4. J Electrochem Soc 153:A689CrossRefGoogle Scholar
  85. 85.
    Medard C, Lefevre M, Dodolet JP, Jaouen F, Lindbergh G (2006) C-n4. Electrochim Acta 51:3202CrossRefGoogle Scholar
  86. 86.
    Lefevre M, Proietti E, Jaouen F, Dodolet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71CrossRefGoogle Scholar
  87. 87.
    Campbell S (2005) Development of transition metal/chalcogen based cathode catalysts for PEM fuel cells. http://www.hydrogen.energy.gov/pdfs/review05/fc13_campbell.pdf
  88. 88.
    Zelaney P (2009) Advanced cathode catalysts. http://www.hydrogen.energy.gov/pdfs/review09/fc_21_zelenay.pdf
  89. 89.
  90. 90.
    Bett JA, Kinoshita K, Stonehart P (1974) Crystallite growth of Pt dispersed on graphitized carbon black. J Catal 35:307–316CrossRefGoogle Scholar
  91. 91.
    Bett JA, Kinoshita K, Stonehart P (1976) Crystallite growth of Pt dispersed on graphitized carbon black ii effect of liquid environment. J Catal 41:124–133CrossRefGoogle Scholar
  92. 92.
    Cai M, Ruthkosky MS, Merzougui B, Swathirajan S, Balogh MP, Oh SH (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160:977–986CrossRefGoogle Scholar
  93. 93.
    Kinoshita K (1988) Carbon electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  94. 94.
    Yu PT, Gu W, Makharia R, Wagner F, Gasteiger H (2006) The impact of carbon stability on PEM fuel cell start-up and shutdown voltage degradation. ECS 210th Meeting, Abstract 0598.pdf. http://www.electrochem.org/meetings/scheduler/abstracts/210/0598.pdf
  95. 95.
    Yu PT, Kocha SS, Paine L, Gu W, Wagner FT (2004) The effects of air purge on the degradation of PEMFCS during startup an shutdown procedures. Proceedings of AIChE 2004 Annual Meeting, New Orleans, 25–29 Apr 2004Google Scholar
  96. 96.
    Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) PEM review. Chem Rev 104:4637–4678CrossRefGoogle Scholar
  97. 97.
    Kreuer KD, Schuster M, Obliers B, Diat O, Traub U, Fuchs A, Klock U, Paddison SJ, Maier J (2008) Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells. J Power Sources 178:499–509CrossRefGoogle Scholar
  98. 98.
    Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Mater 16:329–337CrossRefGoogle Scholar
  99. 99.
    Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingol B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773CrossRefGoogle Scholar
  100. 100.
    Larson JM, Hamrock SJ, Haugen GM, Pham P, Lamanna WM, Moss AB (2007) Membranes based on basic polymers and perfluorinated acids for hotter and drier fuel cell operating conditions. J Power Sources 172:108–114CrossRefGoogle Scholar
  101. 101.
    Meng FQ, Aieta NV, Dec SF, Horan JL, Williamson D, Frey MH, Pham P, Turner JA, Yandrasits MA, Hamrock SJ, Herring AM (2007) Structural and transport effects of doping perfluorosulfonic acid polymers with the heteropoly acids, h3pw12o40 or h4siw12o40. Electrochim Acta 53:1372–1378CrossRefGoogle Scholar
  102. 102.
    Gervasio D (2010) Protic salt polymer membranes. http://www.hydrogen.energy.gov/pdfs/review09/fc_06_gervasio.pdf
  103. 103.
    de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys Chem Chem Phys 11:3305–3312CrossRefGoogle Scholar
  104. 104.
    Yi J (2007) Development of low-cost, durable membrane and MEA for stationary and mobile fuel cell applications. http://www.hydrogen.energy.gov/pdfs/review07/fc_9_yi.pdf
  105. 105.
    Pintauro P (2010) Nanocapillary network proton conducting membranes for high temperature hydrogen/air fuel cells. http://www.hydrogen.energy.gov/pdfs/review10/fc038_pintauro_2010_o_web.pdf
  106. 106.
    Hamrock SJ (2010) Membranes and meas for dry, hot operating conditions. http://www.hydrogen.energy.gov/pdfs/review10/fc034_hamrock_2010_o_web.pdf
  107. 107.
    Mittelsteadt CK (2010) Dimensionally stable membranes. http://www.hydrogen.energy.gov/pdfs/review10/fc036_mittelsteadt_2010_o_web.pdf
  108. 108.
    Endoh E (2008) Progress of highly durable mea for PEMFC under high temperature and low humidity conditions. ECS Trans 12:41–50CrossRefGoogle Scholar
  109. 109.
    Endoh E, Terazono S, Widjaja H, Takimoto Y (2004) OCV degradation. Electrochem Solid-State Lett 7:A209–AA211CrossRefGoogle Scholar
  110. 110.
    Varcoe JR, Slade RCT, Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 6:1428–1429CrossRefGoogle Scholar
  111. 111.
    Piana M, Boccia M, Filipi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-Pt group metal cathode catalyst. J Power Sources 195:5875–5881CrossRefGoogle Scholar
  112. 112.
    Wang H, Turner JA (2010) Reviewing metallic PEMFC bipolar plates. Fuel Cells 10:510–519CrossRefGoogle Scholar
  113. 113.
    Brady MP, Wang H, Turner JA, Meyer HM, More KL, Tortorelli PF, McCarthy BD (2010) Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: part 1. Corrosion, interfacial contact resistance, and surface structure. J Power Sources 195:5610–5618CrossRefGoogle Scholar
  114. 114.
    Dadheech G, Elhamid MHA, Blunk R (2009) Nanostructured and self-assembled superhydrophilic bipolar plate coatings for fuel cell water management. Nanotech Conference & Expo 2009, vol 3, Technical Proceedings, Austin, TX, pp 18–183Google Scholar

Books and Reviews

  1. Alsabet M, Grden M, Jerkiewicz G (2006) Comprehensive study of the growth of thin oxide layers on pt electrodes under well-defined temperature, potential, and time conditions. J Electroanal Chem 589:120–127CrossRefGoogle Scholar
  2. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New YorkGoogle Scholar
  3. Bockris JO’M, Reddy AKN (1973) Modern electrochemistry: an introduction to an interdisciplinary area, vol 1. Springer, New YorkGoogle Scholar
  4. Borup RL, Meyers JP, Pivovar B, Kim YS, Mukundan R, Garland N, Myers DJ, Wilson M, Garzon F, Wood DL, Zelenay P, More K, Stroh K, Zawodizinski TA, Boncella J, McGrath J, Inaba M, Miyatake K, Hori M, Ota K-i, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRefGoogle Scholar
  5. Conway BE (1952) Electrochemical data. Greenwood Press, WestportGoogle Scholar
  6. Conway BE (1964) Theory of principles of electrode processes. Ronald Press, New YorkGoogle Scholar
  7. Conway BE (1995) Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog Surf Sci 49:331–452CrossRefGoogle Scholar
  8. Conway BE, Jerkiewicz G (1992) Surface orientation dependence of oxide film growth at platinum single crystals. J Electroanal Chem 339:123–146CrossRefGoogle Scholar
  9. Gileadi E (1993) Electrode kinetics. VCH, New YorkGoogle Scholar
  10. Kinoshita K (1988) Carbon electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  11. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  12. Kocha SS (2003) Principles of MEA preparation. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells-fundamentals, technology and applications. Wiley, New York, pp 538–565Google Scholar
  13. Kocha SS, Yang DJ, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AICHE J 52:1916–1925CrossRefGoogle Scholar
  14. Koppel T (1999) Powering the future: the ballard fuel cell and the race to change the world. Wiley, New YorkGoogle Scholar
  15. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Pem review. Chem Rev 104:4637–4678CrossRefGoogle Scholar
  16. Liebhavsky HA, Cairns EJ (1968) Fuel cells and batteries. Wiley, New YorkGoogle Scholar
  17. Markovic NM, Ross PN (2000) Electrocatalysts by design: from the tailored surface to a commercial catalyst. Electrochim Acta 45:4101–4115CrossRefGoogle Scholar
  18. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Tao X, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14:24–35Google Scholar
  19. Mench MM (2008) Fuel cell engines. Wiley, HobokenCrossRefGoogle Scholar
  20. Pourbaix M (1966) Atlas of electrochemical equilibrium in aqueous solutions, 1st edn. Pergamon Press, New YorkGoogle Scholar
  21. Prentice G (1991) Electrochemical engineering principles. Prentice Hall, EnglewoodGoogle Scholar
  22. Savadogo O (1998) Emerging membranes for the electrochemical systems: (i) solid polymer electrolyte membranes for fuel cell systems. J New Mater Electrochem Syst:47–66Google Scholar
  23. Vetter KJ (1963) A general thermodynamic theory of the potential of passive electrodes and its influence on passive corrosion. J Electrochem Soc 110:597–605CrossRefGoogle Scholar
  24. Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 139:L28–L30CrossRefGoogle Scholar
  25. Zawodzinski TA, Derouin CR, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through nafion 117 membranes. J Elecrochem Soc 140:1041–1047CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  1. 1.Hydrogen Technologies and Systems CenterNational Renewable Energy LaboratoryGoldenUSA