Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

PEM Fuel Cells and Platinum-Based Electrocatalysts

  • Junliang Zhang
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_147-3



An electrode where the electrochemical oxidation reaction(s) occurs, generating free electrons that flow through a polarized electrical device and enter the cathode. In a fuel cell, the fuel oxidation reaction happens at the anode.


An electrode where the electrochemical reduction reaction(s) occurs, by consuming the electrons originated from the anode. In a fuel cell, the oxygen reduction reaction happens at the cathode.


A material that is applied on the surface of an electrode to catalyze half-cell reactions.

Normal hydrogen electrode (NHE)

Also known as the standard hydrogen electrode (SHE), it is a redox reference electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. The potential of the NHE is defined as zero and based on equilibrium of the following redox half-cell reaction, typically on a Pt surface: 2H+(aq) + 2e→H2(g)

The activities of both the reduced form and the oxidized form are maintained at...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Andujar JM, Segura F (2009) Fuel cells: history and updating. A walk along two centuries. Renew Sust Energ Rev 13(9):2309–2322CrossRefGoogle Scholar
  2. 2.
    Grimes PG (2000) Historical pathways for fuel cells – the new electric century. IEEE Aerosp Electron Syst Mag 15(12):7–10CrossRefGoogle Scholar
  3. 3.
    Appleby AJ (1990) From Sir William Grove to today: fuel cells and the future. J Power Sources 29(1–2):3–11CrossRefGoogle Scholar
  4. 4.
    Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67CrossRefGoogle Scholar
  5. 5.
    Thomas CE (2009) Fuel cell and battery electric vehicles compared. Int J Hydrog Energy 34(15):6005–6020CrossRefGoogle Scholar
  6. 6.
    Gottesfeld S (2007) Fuel cell techno-personal milestones 1984–2006. J Power Sources 171(1):37–45CrossRefGoogle Scholar
  7. 7.
    Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14(3):24–35Google Scholar
  8. 8.
    Raistrick ID (1986) In: Zee JWV, White RE, Kinoshita K, Burney HS (eds) Diaphragms, separators, and ion-exchange membranes, the electrochemical society proceedings series. The Electrochemical Society, Pennington, p 172Google Scholar
  9. 9.
    Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7CrossRefGoogle Scholar
  10. 10.
    Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 139(2):L28–L30CrossRefGoogle Scholar
  11. 11.
    Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel-cells fabricated using thermoplastic ionomers. Electrochim Acta 40(3):355–363CrossRefGoogle Scholar
  12. 12.
    Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H-2, and the role of chemisorbed H. Electrochim Acta 47(22–23):3571–3594CrossRefGoogle Scholar
  13. 13.
    Gasteiger HA, Markovic NM, Ross PN (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.2. rotating disk electrode studies of CO/H2 mixtures at 62-degrees C. J Phys Chem 99(45):16757–16767CrossRefGoogle Scholar
  14. 14.
    Mukerjee S, McBreen J (1996) Hydrogen electrocatalysis by carbon supported Pt and Pt alloys – an in situ x-ray absorption study. J Electrochem Soc 143(7):2285–2294CrossRefGoogle Scholar
  15. 15.
    Neyerlin KC, WB G, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154(7):B631–B635CrossRefGoogle Scholar
  16. 16.
    Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Conway BE, Bockris JO, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise in electrochemistry. Plenum Press, New York, p 301CrossRefGoogle Scholar
  17. 17.
    Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, pp 197–241Google Scholar
  18. 18.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  19. 19.
    Markovic NM, Gasteiger HA, Ross PN (1995) Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution – rotating ring-Pt(Hkl) disk studies. J Phys Chem 99(11):3411–3415CrossRefGoogle Scholar
  20. 20.
    Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1–2):162–171CrossRefGoogle Scholar
  21. 21.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35CrossRefGoogle Scholar
  22. 22.
    Damjanovic A, Brusic V (1967) Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim Acta 12(6):615–628CrossRefGoogle Scholar
  23. 23.
    Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108(13):4127–4133CrossRefGoogle Scholar
  24. 24.
    Markovic NM, Gasteiger HA, Grgur BN, Ross PN (1999) Oxygen reduction reaction on Pt(111): effects of bromide. J Electroanal Chem 467(1):157–163CrossRefGoogle Scholar
  25. 25.
    Adzic RR (1992) Surface morphology effects in oxygen electrochemistry. In: Scherson D, Tryk D, Xing X (eds) Proceedings of the workshop on structural effects in electrocatalysis and oxygen electrochemistry. The Electrochemical Society, Pennington, p 419Google Scholar
  26. 26.
    Uribe FA, Wilson MS, Springer TE, Gottesfeld S (1992) Oxygen reduction (ORR) at the Pt/recast ionomer interface and some general comments on the ORR at Pt/aqueous electrolyte interfaces. In: Scherson DD, Tryk D, Xing X (eds) Proceedings of the workshop on structural effects in electrocatalysis and oxygen electrochemistry. The Electrochemical Society, Pennington, p 494Google Scholar
  27. 27.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  28. 28.
    Wang JX, Zhang JL, Adzic RR (2007) Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J Phys Chem A 111(49):12702–12710CrossRefGoogle Scholar
  29. 29.
    Wang JX, Uribe FA, Springer TE, Zhang JL, Adzic RR (2008) Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss 140:347–362CrossRefGoogle Scholar
  30. 30.
    Neyerlin KC, WB G, Jorne J, Gasteiger HA (2006) Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J Electrochem Soc 153(10):A1955–A1963CrossRefGoogle Scholar
  31. 31.
    Neyerlin KC, Gu W, Jorne J, Clark A, Gasteiger HA (2007) Cathode catalyst utilization for the ORR in a PEMFC – analytical model and experimental validation. J Electrochem Soc 154(2):B279–B287CrossRefGoogle Scholar
  32. 32.
    Neyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, WB G (2005) Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc 152(6):A1073–A1080CrossRefGoogle Scholar
  33. 33.
    Blurton KF, Greenberg P, Oswin HG, Rutt DR (1972) The electrochemical activity of dispersed platinum. J Electrochem Soc 119(5):559–564CrossRefGoogle Scholar
  34. 34.
    Peuckert M, Yoneda T, Betta RAD, Boudart M (1986) Oxygen reduction on small supported platinum particles. J Electrochem Soc 133(5):944–947CrossRefGoogle Scholar
  35. 35.
    Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137(3):845–848CrossRefGoogle Scholar
  36. 36.
    Ross PN (1986) Structure-property relations in noble metal electrocatalysis. In: The Gordon conference on chemistry at interfaces. Lawrence Berkeley Laboratory, Berkeley/Meriden, p LBL-21733Google Scholar
  37. 37.
    Ross PN (1980) Oxygen reduction on supported Pt alloys and intermetallic compounds in phosphoric acid. Final report prepared for the electric power research institute. Electric Power Research Institute, Palo Alto, September 1980Google Scholar
  38. 38.
    Sattler ML, Ross PN (1986) The surface structure of Pt crystallites supported on carbon black. Ultramicroscopy 20:21–28CrossRefGoogle Scholar
  39. 39.
    Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells. Wiley, Chichester, p 811Google Scholar
  40. 40.
    Thompsett D (2003) Pt alloys as oxygen reduction catalysts. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and applications. Wiley, Chichester, p 467Google Scholar
  41. 41.
    Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144(5):1591–1597CrossRefGoogle Scholar
  42. 42.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497CrossRefGoogle Scholar
  43. 43.
    Hammer B, Norskov JK (2000) Theoretical surface science and catalysis – calculations and concepts. In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 45. Academic, San Diego, pp 71–129Google Scholar
  44. 44.
    Norskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278CrossRefGoogle Scholar
  45. 45.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Norskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223(1):232–235CrossRefGoogle Scholar
  46. 46.
    Xu Y, Mavrikakis M (2003) Adsorption and dissociation of O2 on gold surfaces: effect of steps and strain. J Phys Chem B 107(35):9298–9307CrossRefGoogle Scholar
  47. 47.
    Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126(14):4717–4725CrossRefGoogle Scholar
  48. 48.
    Greeley J, Rossmeisl J, Hellman A, Norskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chemie-Int J Res Phys Chem Chem Phys 221(9–10):1209–1220Google Scholar
  49. 49.
    Mukerjee S, McBreen J (1998) Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. J Electroanal Chem 448(2):163–171CrossRefGoogle Scholar
  50. 50.
    Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and Pt-195 EC-NMR study. Phys Chem Chem Phys 8(42):4932–4939CrossRefGoogle Scholar
  51. 51.
    Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324(5923):48–49CrossRefGoogle Scholar
  52. 52.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction – an in-situ Xanes and Exafs investigation. J Electrochem Soc 142(5):1409–1422CrossRefGoogle Scholar
  53. 53.
    Wakabayashi N, Takeichi M, Uchida H, Watanabe M (2005) Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. J Phys Chem B 109(12):5836–5841CrossRefGoogle Scholar
  54. 54.
    Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798CrossRefGoogle Scholar
  55. 55.
    Glass JT, Cahen JGL, Stoner GE, Taylor EJ (1987) The effect of metallurgical variables on the electrocatalytic properties of PtCr alloys. J Electrochem Soc 134(1):58–65CrossRefGoogle Scholar
  56. 56.
    Paffett MT, Daube KA, Gottesfeld S, Campbell CT (1987) Electrochemical and surface science investigations of PtCr alloy electrodes. J Electroanal Chem 220(2):269–285CrossRefGoogle Scholar
  57. 57.
    Beard BC, Ross JPN (1990) The structure and activity of Pt-Co alloys as oxygen reduction electrocatalysts. J Electrochem Soc 137(11):3368–3374CrossRefGoogle Scholar
  58. 58.
    Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756CrossRefGoogle Scholar
  59. 59.
    Koh S, Hahn N, CF Y, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt-Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155(12):B1281–B1288CrossRefGoogle Scholar
  60. 60.
    Schulenburg H, Muller E, Khelashvili G, Roser T, Bonnemann H, Wokaun A, Scherer GG (2009) Heat-treated PtCo3 nanoparticles as oxygen reduction catalysts. J Phys Chem C 113(10):4069–4077CrossRefGoogle Scholar
  61. 61.
    Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130(11):2299–2302CrossRefGoogle Scholar
  62. 62.
    Jalan V, Taylor EJ (1984) Importance of interatomic spacing in the catalytic reduction of oxygen in phosphoric acid. In: McIntyre JDE, Weaver MJ, Yeager EB (eds) The electrochemical society softbound proceedings series. The Electrochemical Society, Pennington, p 546Google Scholar
  63. 63.
    Landsman DA, Luczak FJ (1982) Noble metal-chromium alloy catalysts and electrochemical cell. US Patent 4,316,944, United Technologies Corporation: USGoogle Scholar
  64. 64.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247CrossRefGoogle Scholar
  65. 65.
    Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1–2):258–262CrossRefGoogle Scholar
  66. 66.
    M-k M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217Google Scholar
  67. 67.
    Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129(42):12624CrossRefGoogle Scholar
  68. 68.
    Gottesfeld S (1986) The ellipsometric characterization of Pt + Cr alloy surfaces in acid solutions. J Electroanal Chem 205(1–2):163–184CrossRefGoogle Scholar
  69. 69.
    Paffett MT, Beery JG, Gottesfeld S (1988) Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. J Electrochem Soc 135(6):1431–1436CrossRefGoogle Scholar
  70. 70.
    Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357(1–2):201–224CrossRefGoogle Scholar
  71. 71.
    Toda T, Igarashi H, Watanabe M (1998) Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J Electrochem Soc 145(12):4185–4188CrossRefGoogle Scholar
  72. 72.
    Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) A study of electronic structures of Pt3M (M = Ti, V, Cr, Fe, Co, Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123(20):204717CrossRefGoogle Scholar
  73. 73.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556CrossRefGoogle Scholar
  74. 74.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt Alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589CrossRefGoogle Scholar
  75. 75.
    Uribe FA, Zawodzinski TA (2002) A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochim Acta 47(22–23):3799–3806CrossRefGoogle Scholar
  76. 76.
    Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106(46):11970–11979CrossRefGoogle Scholar
  77. 77.
    Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108(30):11011–11023CrossRefGoogle Scholar
  78. 78.
    Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) Correlation of water activation, surface properties, and oxygen reduction reactivity of supported Pt-M/C bimetallic electrocatalysts using XAS. J Electrochem Soc 152(11):A2159–A2169CrossRefGoogle Scholar
  79. 79.
    Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim Acta 49(24):4091–4099CrossRefGoogle Scholar
  80. 80.
    Lima FHB, Giz MJ, Ticianelli EA (2005) Electrochemical performance of dispersed Pt-M (M = V, Cr and Co) nanoparticles for the oxygen reduction electrocatalysis. J Braz Chem Soc 16(3 A):328–336CrossRefGoogle Scholar
  81. 81.
    Lima FHB, Salgado JRC, Gonzalez ER, Ticianelli EA (2007) Electrocatalytic properties of PtCoC and PtNiC alloys for the oxygen reduction reaction in alkaline solution. J Electrochem So 154(4):A369A375 CrossRefGoogle Scholar
  82. 82.
    Creemers C, Deurinck P (1997) Platinum segregation to the (111) surface of ordered Pt80Fe20: LEIS results and model simulations. Surf Interface Anal 25(3):177–189CrossRefGoogle Scholar
  83. 83.
    Gauthier Y, Joly Y, Baudoing R, Rundgren J (1985) Surface-sandwich segregation on nondilute bimetallic alloys: Pt50Ni50 and Pt78Ni22 probed by low-energy electron diffraction. Phys Rev B 31(10):6216–6218CrossRefGoogle Scholar
  84. 84.
    Gauthier Y, Baudoing-Savois R, Bugnard JM, Hebenstreit W, Schmid M, Varga P (2000) Segregation and chemical ordering in the surface layers of Pt25Co75(111): a LEED/STM study. Surf Sci 466(1–3):155–166CrossRefGoogle Scholar
  85. 85.
    Gasteiger HA, Ross PN Jr, Cairns EJ (1993) LEIS and AES on sputtered and annealed polycrystalline Pt-Ru bulk alloys. Surf Sci 293(1–2):67–80CrossRefGoogle Scholar
  86. 86.
    Ruban AV, Skriver HL, Norskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990–16000CrossRefGoogle Scholar
  87. 87.
    Ma Y, Balbuena PB (2008) Pt surface segregation in bimetallic Pt3M alloys: a density functional theory study. Surf Sci 602(1):107–113CrossRefGoogle Scholar
  88. 88.
    Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y (2008) Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819CrossRefGoogle Scholar
  89. 89.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819CrossRefGoogle Scholar
  90. 90.
    Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125CrossRefGoogle Scholar
  91. 91.
    Koh S, Leisch J, Toney MF, Strasser P (2007) Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. J Phys Chem C 111(9):3744–3752CrossRefGoogle Scholar
  92. 92.
    Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778CrossRefGoogle Scholar
  93. 93.
    Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew Chem Int Ed Engl 46(47):8988–8991CrossRefGoogle Scholar
  94. 94.
    Neyerlin KC, Srivastava R, CF Y, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186(2):261–267CrossRefGoogle Scholar
  95. 95.
    Wang C, Van Der Vliet D, Chang KC, You H, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113(45):19365–19368CrossRefGoogle Scholar
  96. 96.
    Watanabe M, Wakisaka M, Yano H, Uchida H (2008) Analyses of oxygen reduction reaction at Pt-based electrocatalysts. ECS Trans 16:199–206CrossRefGoogle Scholar
  97. 97.
    Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J Phys Chem C 112(7):2750–2755CrossRefGoogle Scholar
  98. 98.
    Ferreira PJ, la OGJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells – a mechanistic investigation. J Electrochem Soc 152(11):A2256–A2271CrossRefGoogle Scholar
  99. 99.
    Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155(2):253–263CrossRefGoogle Scholar
  100. 100.
    Morita T, Kojima K (2008) Development of fuel cell hybrid vehicle in Toyota. ECS Trans 16:185–198Google Scholar
  101. 101.
    Uchimura M, Sugawara S, Suzuki Y, Zhang J, Kocha SS (2008) Electrocatalyst durability under simulated automotive drive cycles. ECS Trans 16(2):225–234CrossRefGoogle Scholar
  102. 102.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262CrossRefGoogle Scholar
  103. 103.
    Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles – a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid State Lett 4(12):A217–A220CrossRefGoogle Scholar
  104. 104.
    Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adzic RR (2003) Pt submonolayers on metal nanoparticles – novel electrocatalysts for H2 oxidation and O2 reduction. Electrochim Acta 48(25–26):3841–3849CrossRefGoogle Scholar
  105. 105.
    Wang JX, Brankovic SR, Zhu Y, Hanson JC, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150(8):A1108–A1117CrossRefGoogle Scholar
  106. 106.
    Brankovic SR, McBreen J, Adzic RR (2001) Spontaneous deposition of Pt on the Ru(0001) surface. J Electroanal Chem 503(1–2):99–104CrossRefGoogle Scholar
  107. 107.
    Sasaki K, Wang JX, Balasubramanian M, McBreen J, Uribe F, Adzic RR (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23):3873–3877CrossRefGoogle Scholar
  108. 108.
    Kolb DM, Przasnyski M, Gerischer H (1974) Underpotential deposition of metals and work function differences. J Electroanal Chem 54(1):25–38CrossRefGoogle Scholar
  109. 109.
    Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930CrossRefGoogle Scholar
  110. 110.
    Aramata A (1997) Underpotential deposition on single-crystal metals. In: Bockris JO, White RE, Conway BE (eds) Modern aspects of electrochemistry. Plenum, New YorkGoogle Scholar
  111. 111.
    Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474(1–3):L173–L179CrossRefGoogle Scholar
  112. 112.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964CrossRefGoogle Scholar
  113. 113.
    Zhang J, Vukmirovic MB, Sasaki K, Uribe F, Adzic RR (2005) Platinum monolayer electro catalysts for oxygen reduction: effect of substrates, and long-term stability. J Serb Chem Soc 70(3):513–525CrossRefGoogle Scholar
  114. 114.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed Engl 44(14):2132–2135CrossRefGoogle Scholar
  115. 115.
    Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127(36):12480–12481CrossRefGoogle Scholar
  116. 116.
    Zhou WP, Yang XF, Vukmirovic MB, Koel BE, Jiao J, Peng GW, Mavrikakis M, Adzic RR (2009) Improving electrocatalysts for O-2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131(35):12755–12762CrossRefGoogle Scholar
  117. 117.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704CrossRefGoogle Scholar
  118. 118.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222CrossRefGoogle Scholar
  119. 119.
    Wang JX, Inada H, LJ W, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J Am Chem Soc 131(47):17298–17302CrossRefGoogle Scholar
  120. 120.
    Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, Adzic RR (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55(8):2645–2652CrossRefGoogle Scholar
  121. 121.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305CrossRefGoogle Scholar
  122. 122.
    PT Y, Gu W, Makharia R, Wagner FT, Gasteiger HA (2006) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans 3:797–809CrossRefGoogle Scholar
  123. 123.
    Yu PT, Kocha S, Paine L, Gu W, Wagner FT (2004) The effects of air purge on the degradation of PEM fuel cells during startup and shutdown procedures. In: 2004 AIChE spring national meeting, conference proceedings, New Orleans, pp 521–527Google Scholar
  124. 124.
    Debe MK (2003) Novel catalyst, catalyst support and catalyst coated membrane methods. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals technology and applications. Wiley, ChichesterGoogle Scholar
  125. 125.
    Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowski A (2008) Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20(7):2444–2454CrossRefGoogle Scholar
  126. 126.
    Debe MK, Drube AR (1995) Structural characteristics of a uniquely nanostructured organic thin film. J Vac Sci Technol B Microelectron Nanometer Struct 13(3):1236–1241CrossRefGoogle Scholar
  127. 127.
    Debe MK, Schmoeckel AK, Vernstrorn GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161(2):1002–1011CrossRefGoogle Scholar
  128. 128.
    Bonakdarpour A, Stevens K, Vernstrom GD, Atanasoski R, Schmoeckel AK, Debe MK, Dahn JR (2007) Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochim Acta 53(2):688–694CrossRefGoogle Scholar
  129. 129.
    Debe MK, Schmoeckel AK, Hendricks SM, Vernstrom GD, Haugen GM, Atanasoski RT (2005) Durability aspects of nanostructured thin film catalysts for PEM fuel cells. ECS Trans 1:51–66CrossRefGoogle Scholar
  130. 130.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Edit Engl 46(22):4060–4063CrossRefGoogle Scholar
  131. 131.
    Mayers B, Jiang X, Sunderland D, Cattle B, Xia Y (2003) Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J Am Chem Soc 125(44):13364–13365CrossRefGoogle Scholar
  132. 132.
    Sun Y, Tao Z, Chen J, Herricks T, Xia Y (2004) Ag nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. J Am Chem Soc 126(19):5940–5941CrossRefGoogle Scholar
  133. 133.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745CrossRefGoogle Scholar
  134. 134.
    Sun SH, Zhang GX, Geng DS, Chen YG, Banis MN, Li RY, Cai M, Sun XL (2010) Direct growth of single-crystal Pt nanowires on Sn@CNT nanocable: 3D electrodes for highly active electrocatalysts. Chem Eur J 16(3):829–835CrossRefGoogle Scholar
  135. 135.
    Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131(22):7542CrossRefGoogle Scholar
  136. 136.
    Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  137. 137.
    Lim BW, XM L, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett 8(11):4043–4047CrossRefGoogle Scholar
  138. 138.
    Erlebacher J, Snyder J (2009) Dealloyed nanoporous metals for PEM fuel cell catalysis. ECS Trans 25:603–612CrossRefGoogle Scholar
  139. 139.
    Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources 165(1):65–72CrossRefGoogle Scholar
  140. 140.
    Erlebacher J (2009) Materials science of hydrogen/oxygen fuel cell catalysis. In: Ehrenreich H, Spaepen F (eds) Solid state physics – advances in research and applications. Academic, New York, pp 77–141Google Scholar
  141. 141.
    Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132(14):4984–4985CrossRefGoogle Scholar
  142. 142.
    Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10(2):638–644CrossRefGoogle Scholar

Books and Reviews

  1. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  2. Lipkowski J, Ross P (eds) (1998) Electrocatalysis (frontiers in electrochemistry). Wiley-VCH, DanversGoogle Scholar
  3. Markovic NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):117–229CrossRefGoogle Scholar
  4. Newman J, Thomas-Alyea KE (2004) Electrochemical system, 3rd edn. Wiley, HobokenGoogle Scholar
  5. Vielstich W, Gasteiger H, Lamm A (eds) (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, ChichesterGoogle Scholar
  6. Vielstich W, Gasteiger H, Lamm A (eds) (2009) Handbook of fuel cells: advances in electrocatalysis, materials, diagnostics and durability, vol 5 and 6. Wiley, New YorkGoogle Scholar
  7. Wieckowski A, Savinova ER, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticle surfaces, 1st edn. Boca Raton, CRC PressGoogle Scholar
  8. Zhang J (ed) (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, 1st edn. London, SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Fuel Cell BusinessGeneral Motors Global Propulsion SystemsPontiacUSA