Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Solid Oxide Fuel Cells, Sustainability Aspects

  • K. U. Birnbaum
  • Robert Steinberger-Wilckens
  • P. Zapp
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_140-3



Balance of plant – summary term for all components of a fuel cell system, apart from the fuel cell stack


Combined heat and power


Distributed generation


Life cycle assessment


Life cycle inventory

Life cycle

Period of time and/or use of an object (product) spanning the time from the production over use to final disposal (cradle to grave)


Solid oxide fuel cell


Fuel cell assembly, including the single cells and the interconnecting plates

Definition of the Subject

The introduction of environmentally relevant issues in the planning, development, and design phase of a product is today an important subject alongside the other relevant technical, economical, social, and legal framework conditions [1]. Fuel cells as a future energy conversion system are expected to have a high potential for environmental benefits. They offer high electrical efficiency, which implies reductions in fossil fuel use and greenhouse gas emissions relative to today’s electricity...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    European Parliament: Directive 2005/32/EC of the European Parliament and of the Council, Official Journal of the European Union, 22 July 2005. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:191:0029:0058:EN:PDF. Accessed Mar 2010
  2. 2.
    ISO 14040/14044 (2006) Environmental management – life cycle assessment – principles and framework, − requirements and guidelines. Deutsches Institut für Normung e. VGoogle Scholar
  3. 3.
    Grausa W, Worrella E (2009) Trends in efficiency and capacity of fossil power generation in the EU. Energ Policy 376:2147–2160CrossRefGoogle Scholar
  4. 4.
    Arbeitsgemeinschaft Energiebilanzen e.V (2010) Ausgewählte Effizienzindikatoren zur Energiebilanz Deutschland. Daten für die Jahre von 1990 bis 2008 (Selected efficiency indicators for the German energy balances. Data for the years 1990 to 2008). BerlinGoogle Scholar
  5. 5.
    Brown MH, Sedano RP (2004) Electricity transmission – a primer. National Council on Electric Policy, Washington, DC. ISBN 1-58024-352-5Google Scholar
  6. 6.
    Viebahn P, Patyk A, Fritsche UR, Beer M, Corradini R, Ciroth A, Blesl M, Mayer-Spohn O, Macharey U, Schnettler A, Smolka Th, Fischer M, Schuller O, Große Böckmann Th, Wagner H-J, Mayer H (2008) Erstellung der Grundlagen für einen harmonisierten und fortschreibbaren Datensatz des deutschen Strommixes (Development of base data for a harmonised and updateable data set of the German electricity mix). Stuttgart/Heidelberg/DarmstadtGoogle Scholar
  7. 7.
    Bundesanstalt für Geowissenschaften und Rohstoffe/ Bundesministerium für Wirtschaft und Arbeit (German Ministry of the Economy) (2002) Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2002 (Reserves, resources and availability of energy raw materials 2002). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. ISSN 0342- 9288Google Scholar
  8. 8.
    ASUE (2002). Mikro-KWK – Motoren, Turbinen und Brennstoffzellen (Micro CHP – engines, turbines and fuel cells). KaiserslauternGoogle Scholar
  9. 9.
    Slowe J (2008) Market prospects for the CHP equipment industry. Journal of Cogeneration and On-Site Power Production. http://www.delta-ee.com/downloads/ARTICLES_COSPP_%2008_3_p29_33_Slowe.pdf. Accessed May 2011
  10. 10.
    Cogeneration Directive 2004/8/EC. European Commission, Brussels, 2004Google Scholar
  11. 11.
    Herdin GR (2000) Increasing gas engine efficiency. In: Proceedings of the World Energy Engineering Congress, AtlantaGoogle Scholar
  12. 12.
    Obernberger I, Thek G (2004) Techno-economic evaluation of selected decentralised CHP applications based on biomass combustion in IEA partner countries. IEA Task 32 report, Graz 2004Google Scholar
  13. 13.
    VDI 2067 and VDEW-Lastprofile Materialien M-28/99Google Scholar
  14. 14.
    Föger K (2010) Commercialisation of CFCL’s residential power station - BlueGen. In: Proceedings of the 9th European SOFC forum, Lucerne. Paper 0203Google Scholar
  15. 15.
    Birnbaum KU (2010) Brennstoffzellen / Brennstoffzellen Hybridkraftwerke. In Energietechnologien 2050 – Schwerpunkte für Forschung und Entwicklung, Technologiebericht, Fraunhofer Verlag, ISBN: 978-3-8396-0102-0Google Scholar
  16. 16.
    Steinberger-Wilckens R, Buchkremer H-P, Malzbender J, Blum L, de Haart LGJ, Pap M (2010) Recent developments in SOFC research at Forschungszentrum Jülich. In: Proceedings of the 9th European SOFC forum, Lucerne, 30 June–2 July 2010. Paper A0105Google Scholar
  17. 17.
    Blum L, Peters Ro, David P, Au SF, Deja R, Tiedemann W (2004) Integrated stack module development for a 20 kW system. In: Proceedings of the 6th European SOFC forum, Lucerne, 30 June–2 July 2004Google Scholar
  18. 18.
    Esdaile-Bouquet T (2011) CHP support mechanisms in the EU, CODE final dissemination workshop, Brussels, .25 March. http://www.code-project.eu/wp-content/uploads/2011/03/Thomas-Bouquet.pdf. Accessed May 2010
  19. 19.
    Pillai MR, Bierschenk DM, Barnett SA (2008) Electrochemical partial oxidation of methane in solid oxide fuel cells: effect of anode reforming activity. Catal Lett 121:19–23CrossRefGoogle Scholar
  20. 20.
    European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. COM (2011) 112 final, Brussels, 8 Mar 2011Google Scholar
  21. 21.
    Steinberger-Wilckens R (2005) Hydrogen as a means of transporting and controlling wind power. In: Ackermann T (ed) Wind energy in power systems. Wiley, Chichester, pp 505–519. ISBN 0-470-85508-8Google Scholar
  22. 22.
    Brisse A, Schefold J, Stoots C, O'Brien J (2010) Electrolysis using fuel cell technology. In: Steinberger-Wilckens R, Lehnert W (eds) Innovations in fuel cell technologies, vol 2, RSC energy and environment series. Royal Society of Chemistry, London, pp 267–286. ISBN 978-1-84973-033-4Google Scholar
  23. 23.
    Jönsson O, Polman E, Jensen JK, Eklund R, Schyl H, Ivarsson S (2003) Sustainable gas enters the European gas distribution system. In: Proceedings world gas conference, TokyoGoogle Scholar
  24. 24.
    Oasmaa A Report on biofuels for SOFC applications, part 1: fuel options (D6.1). Report to the large SOFC project. VTT Technical Research Centre of Finland. http://www.vtt.fi/files/projects/largesofc/large_sofc_biofuels_wp6_public.pdf. Accessed May 2011
  25. 25.
    Global Emission Model for Integrated Systems (GEMIS). http://www.oeko.de/service/gemis/en/index.htm. Accessed May 2011
  26. 26.
    Machat M, Werner K (2007) Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix (Development of the specific CO2 emissions of the German electricity mix). Umweltbundesamt, Dessau, ISSN 1862-4359Google Scholar
  27. 27.
    Del Borghi A, et al. (2009) Final report on environmental impact of the operation of high temperature FC. LargeSOFC-Project, Towards a large SOFC power plant, Integrated EU project under the 6th framework programmeGoogle Scholar
  28. 28.
    BMU (2003) Bundeseinheitliche Liste der CO2-Emissionsfaktoren. Bundesministerium für Umwelt, Berlin, 1 Nov 2003Google Scholar
  29. 29.
    Steinberger-Wilckens R, Bucheli O, de Haart LGJ, Hagen A, Kiviaho J, Larsen J, Pyke S, Rietveld B, Sfeir J, Tietz F, Zahid M (2009) Real-SOFC – a joint European effort to improve SOFC durability. ECS transactions: solid oxide fuel cells 11 (SOFC XI). In: Proceedings of the SOFC XI meeting, Vienna; ECS Transactions, vol 25, issue 2, “SOFC XI”, The Electrochemical Society, Pennington, pp 43–56Google Scholar
  30. 30.
    Blum L, H-P Buchkremer GSM, de Haart LGJ, Quadakkers J, Reisgen U, Steinberger-Wilckens R, Steinbrech RW, Tietz F (2006) Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich. Int J Appl Ceram Technol 3(6):470–476CrossRefGoogle Scholar
  31. 31.
    Schiller G, Henne R, Lang M, Müller M (2004) Development of solid oxide fuel cells by applying DC and RF plasma deposition technologies. J Fuel Cell Sci Technol 4(1–2):56–61CrossRefGoogle Scholar
  32. 32.
    Cunningham R (2011). Fuel cell gas turbine hybrids – a key part of a clean future, The Rolls-Royce development programme for pressurised hybrid fuel cell systems. http://www.fuelcellmarkets.com/content/images/articles/H2net%20RAL%20Sep01.pdf. Accessed May 2011
  33. 33.
    German Federal Government’s National Electromobility Development Plan, Berlin, Aug 2009. http://www.bmwi.de/English/Redaktion/Pdf/national-electromobility-development-plan,property=pdf,bereich=bmwi,sprache=en,rwb=true.pdf. Accessed May 2011
  34. 34.
    U.S. Geological Survey web-site. http://minerals.usgs.gov/minerals/pubs/commodity/zirconium/zircomcs07.pdf. Accessed Sept 2011
  35. 35.
    Hedrick JB (2003) U.S. geological survey, mineral commodity, summaries, January 2003. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/740303.pdf. Accessed Sept 2011
  36. 36.
    U.S. Geological Survey: Fact Sheet 087-02 – Rare earth elements-critical resources for high technology. http://pubs.usgs.gov/fs/2002/fs087-02/. Accessed Sept 2011
  37. 37.
    U.S. Geological Survey: rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2010-raree.pdf. Accessed Sept 2011
  38. 38.
    Kingsnorth DJ (2009) The rare earth market: can supply meet demand in 2014? Industrial minerals company of Australia, PDAC 2009, TorontoGoogle Scholar
  39. 39.
  40. 40.
    Mineral Information Institute. http://www.mii.org/periodic/Y.htm. Accessed Sept 2011
  41. 41.
    Seilnacht T, Binder H (1999) Lexikon der chemischen Elemente. Stuttgart/LeipzigGoogle Scholar
  42. 42.
  43. 43.
    Mineral Information Institute: Lanthanum. http://www.mii.org/periodic/La.htm. Accessed Sept 2011
  44. 44.
    MacMillan JP (2004) Strontium. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, New YorkGoogle Scholar
  45. 45.
    International Manganese Institute. http://www.manganese.org/. Accessed Sept 2011
  46. 46.
    Duke JM (1980) Nickel in rocks and ores. In: Nriagu JO (ed) Nickel in the environment. Wiley, New York/Chichester/Brisbane/Toronto, pp 27–50Google Scholar
  47. 47.
    Mining, smelting and refining of nickel. http://www.nickelinstitute.org/en/NickelUseInSociety/AboutNickel/HowNickelIsProduced.aspx. Accessed Sept 2011
  48. 48.
    Sanborn D, et al. (1995–1996) Amethyst Galleries, Inc. (updated several times by Covey S.). http://www.galleries.com/minerals/sulfides/pentland/pentland.htm. Accessed Sept 2011
  49. 49.
    Hertel RF, Maass T, Muller VR (1991) Nickel. World Health Organization, .Geneva. http://www.inchem.org/pages/ehc.html. Accessed Sept 2011
  50. 50.
  51. 51.
    Kerfoot DGE (2004) Nickel. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.  https://doi.org/10.1002/14356007.a17_157
  52. 52.
    Buchkremer HP, Diekmann U, de Haart LGJ, Kabs H, Stimming U, Stöver D (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds). Proceedings of the 5th international symposium. Solid Oxide Fuel Cells (SOFC-V), The Electrochemical Society, Pennington, p 160Google Scholar
  53. 53.
    de Haart LGJ, Vinke IC, Janke A, Ringel H, Tietz F (2001) New developments in stack technology for anode substrate based SOFC. In: Yokokawa H, Singhal SC (eds) Solid oxide fuel cells VII. The Electrochemical Society, PV 2001-16. Proceedings series, Pennington, p 111Google Scholar
  54. 54.
    Piron-Abellan J, Shement V, Tietz F, Singheiser L, Quadakkers WJ, Gil A (2001) Ferritic steel interconnect for reduced temperature SOFC. In: Yokokawa H (ed) Proceedings of the 7th international symposium on solid oxide fuel cells (SOFC-VII), Tsukuba, 3–8 Juni 2001 (Proceedings of the electrochemical society; 2001–16, Pennington, 2001) pp 811–819. ISBN 1-56677-322-9Google Scholar
  55. 55.
    Thyssen Krupp VDM, CroFer22APU Material data sheet No. 8005Google Scholar
  56. 56.
    Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F (2005) Optimization of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. J Power Sources 141:216CrossRefGoogle Scholar
  57. 57.
    Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stöver D (2005) Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: part I. Variation of composition. Solid State Ionics 176:1341–1350CrossRefGoogle Scholar
  58. 58.
    Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L, Hilpert K (2006) Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel CroFer22APU. J Electrochem Soc 153:A765CrossRefGoogle Scholar
  59. 59.
    Shaigana N, Qua W, Iveyb DG, Chen W (2010) A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Power Sources 195(6):1529–1542CrossRefGoogle Scholar
  60. 60.
    Ishihara T, Sammes NM, Yamamoto O (2003) Electrolytes. In: Singhal SC, Kendall K (eds) High temperature solid oxide fuel cells. Elsevier, Oxford/New York/Tokyo. ISBN 1 856 173 879CrossRefGoogle Scholar
  61. 61.
    Stöver D, Buchkremer HP, Huijsmans JPP (2003) MEA/cell preparation methods: Europe/USA. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 4, Fuel cell technology and applications, part 2 Wiley, Chichester, pp 1013–1031Google Scholar
  62. 62.
    Haanappel VAC, Shemet V, Vinke IC, Gross SM, Koppitz Th MN, Zahid M, Quadakkers WJ (2005) Evaluation of the suitability of various glass sealant-alloy combinations under SOFC stack conditions. J Mater Sci 40:1583–1592CrossRefGoogle Scholar
  63. 63.
    Gross SM, Koppitz T, Remmel J, Reisgen U (2005) Glass-ceramic materials of the system BaO-CaO-SiO2 as sealants for SOFC applications. Ceramic engineering and science proceedings CODEN CESPDK, 26(4): 239–245. ISSN 0196-6219Google Scholar
  64. 64.
    Stöver D, Mai HPA, Menzler NH, Zahid M (2006) Processing and properties of advanced solid oxide fuel cells. In: Chandra T, Tsuzaki K, Militzer M, Ravindran C (eds) Proceedings of the THERMEC 2006, Materials Science Forum (vols 539–543), pp 1367–1372Google Scholar
  65. 65.
    Hellerbrand H (1995) Processing of ceramics, part I. In: Cahn RW, Haasen I, Kramer EJ (eds) Materials science and technology, vol 17A. Wiley, Weinheim, p 190Google Scholar
  66. 66.
    Gaudon M, Menzler NH, Djurado E, Buchkremer HP (2005) YSZ electrolyte of anode-supported SOFCs prepared from sub micron YSZ powders. J Mater Sci 40:3735–3743CrossRefGoogle Scholar
  67. 67.
    Holmes PJ, Loasby RG (1976) Handbook of thick film technology. Electrochemical Publications, Scotland, p 14Google Scholar
  68. 68.
    Franco T, Ruckdäschel R (2006) Diffusion and protecting barrier layers in a substrate supported SOFC concept. In: Proceedings of the 7th European solid oxide fuel cell forum, European fuel cell forum, Oberrohrdorf. Paper No. P0802–051Google Scholar
  69. 69.
    Gubner A, Nguyen-Xuan T, Bram M, Remmel J, de Haart (2006) Lightweight cassette type SOFC stacks for automotive applications. In: Proceedings of the 7th European SOFC forum, Lucerne, Paper B0402Google Scholar
  70. 70.
    N. Margaritis, L. Blum, P. Batfalsky, S. Ceschini, Q. Fang, D. Federmann, J. Kroemer, N. H. Menzler, R. Peters, R. Steinberger-Wilckens (2015) Status of light weight cassette design of SOFC. In: proceedings of the SOFC XIV symposium, 27-31 July, Glasgow; also in ECS Trans 68: 209–220.  https://doi.org/10.1149/06801.0209ecstCrossRefGoogle Scholar
  71. 71.
    Montero X, Tietz F, Stöver D, Cassir M, Villarreal I (2009) Evaluation of commercial alloys as cathode current collector for metal-supported tubular solid oxide fuel cells. Corros Sci 51(1):110–118CrossRefGoogle Scholar
  72. 72.
    Henne R, Arnold J, Kavka T, Maslani A (2004) Influence of injection mode on properties of DC plasma jets for thermal plasma spraying. Czech J Phys 54(3):C766–C771, Springer, NetherlandsGoogle Scholar
  73. 73.
    Henne R (2003) Was können Brennstoffzellen zur Lösung unserer Energieversorgungsprobleme beitragen? Presentation, VDI Arbeitskreis Technische Gebäudeausrüstung Stuttgart, 20 Oct 2003. wiv.vdi-bezirksverein.de/HenneVDI.pdf. Accessed May 2011
  74. 74.
    Schiller G (2006) Metallgestützte SOFC-Zellen. Fortbildungsseminar Werkstofffragen der Hochtemperatur-Brennstoffzelle, Deutsche Gesellschaft für Materialkunde (Hrsg), Jülich, 26–28. Apr 2006. http://elib.dlr.de/45395/1/J%C3%BClich_DGM_2006_G._Schiller.pdf. Accessed May 2011
  75. 75.
    Lenntech BV (2011). http://www.lenntech.com/periodic/elements/ar.htm. Accessed Feb 2011
  76. 76.
    Praxair, gases, production of argon. www.praxair.com. Accessed Feb 2011
  77. 77.
    Goettler R (2009) Overview of the Rolls-Royce SOFC technology and SECA program. http://www.netl.doe.gov/publications/proceedings/09/seca/presentations/Goettler_Presentation.pdf. Accessed May 2011
  78. 78.
    Hart NT (2004) Scale up of the IP-SOFC to multi kilowatt levels. Report F/01/00197/REP, URN 04/556, DTI. www.berr.gov.uk/files/file15317.pdf. Accessed May 2011
  79. 79.
    Cassidy M, Boulfrad S, Irvine J, Chung C, Jorger M, Munnings C, Pyke S (2008) Integration of oxide anodes into the Rolls-Royce IP-SOFC concept. J Fuel Cell Sci Technol 9(6):891–898CrossRefGoogle Scholar
  80. 80.
    Hart D, Hörmandinger G (1997) Initial assessment of the environmental characteristics of fuel cells and competing technologies. ETSU F/02/00111/REP/1, ETSU, HarwellGoogle Scholar
  81. 81.
    Zapp P (1998) Ganzheitliche Material- und Energieflussanalyse von SOFC-Brennstoffzellen. Dissertation Universität-GH Essen, Jülich, Jül-3497Google Scholar
  82. 82.
    Karakoussis V, Brandon NP, Leach M, van der Vorst P (2001) The environmental impact of manufacturing planar and tubular solid oxide fuel cells. J Power Sources 101:10–26CrossRefGoogle Scholar
  83. 83.
    Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells, part 2: environmental performance. Int J Life Cycle Ass 8(6):365–378CrossRefGoogle Scholar
  84. 84.
    http://ecoinvent.ch. Accessed Aug 2011
  85. 85.
    Krewitt W, Pehnt M, Fischedick M, Temming H (2005) Brennstoffzellen in der Kraft-Wärme-Kopplung - Ökobilanzen, Szenarien, Marktpotentiale. Beiträge zur Umweltgestaltung Band A 156, Erich Schmidt Verlag, BerlinGoogle Scholar
  86. 86.
    European Institute for Energy Research (EIFER) (2008) Final report on evaluation on the sustainability of the stacks produced in the project. Real-SOFC Project, Realising reliable, durable energy efficient and cost effective SOFC systems, Integrated EU project under the 6th framework programmeGoogle Scholar
  87. 87.
    Rolls-Royce Fuel Cell Systems Limited (2008) Life cycle inventory analysis of the IP-SOFC stack concept. Real-SOFC Project, Realising reliable, durable energy efficient and cost effective SOFC systems, Integrated EU project under the 6th framework programmeGoogle Scholar
  88. 88.
    Gerboni R, Pehnt M, Viebahn P, Lavagno E (2008) Final report on technical data, costs and life cycle inventories of fuel cells. NEEDS-Project, New energy externalities developments for sustainability, Integrated EU project under the 6th framework programmeGoogle Scholar
  89. 89.
    S. Bargigli, F. Barbir, G. Fiorentino, M. Founti, D. Giannopoulos, K.H. Kettl, P. Masoni, A. Moreno, R. Mubbala, M. Narodoslawsky, R. Steinberger-Wilckens, S. Ulgiati, A. Vukman, A. Zamagni, A. Zucaro (2011) An LCA evaluation of MCFCs, SOFCs and PEMFCs, Towards Product Category Rules and Environmental Product Declaration. In: Proceedings of the European Fuel Cells Conference, Rome 14–16 Dec 2011. Scopus EID: 2-s2.0–84923593467Google Scholar
  90. 90.
    Bauen A, Hart D (2000) Assessment of the environmental benefits of transport and stationary fuel cells. J Power Sources 86:482–494CrossRefGoogle Scholar
  91. 91.
    Guinée J, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, de Haes HAU, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Kluwer, DordrechtGoogle Scholar
  92. 92.
    Han F, Leonide A, van Gestel T, Buchkremer HP (2010) Excellent electrochemical performance with thin YSZ electrolyte for IT-SOFCs. In: Proceedings of the 9th European SOFC forum, European Fuel Cell Forum, Oberrohrdorf/LucerneGoogle Scholar
  93. 93.
    Fuel Cell and Hydrogen Joint Undertaking (FCH JU) (2008) Multi-annual implementation plan (MAIP). BrusselsGoogle Scholar
  94. 94.
    Project documentation and deliverables of EuroFC-Grid, project funded by the FCH JU, 2010–2012Google Scholar

Books and Reviews

  1. Seilnacht T, Binder H (1999) Lexikon der chemischen Elemente, Stuttgart/Leipzig, publishing house Hirzel StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • K. U. Birnbaum
    • 1
  • Robert Steinberger-Wilckens
    • 2
  • P. Zapp
    • 1
  1. 1.Institute of Energy Research, Forschungszentrum JülichJülichGermany
  2. 2.School of Chemical EngineeringUniversity of BirminghamBirminghamUK

Section editors and affiliations

  • Adam Z. Weber
    • 1
  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA