Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Fuel Cell Types and Their Electrochemistry

  • Günther G. Scherer
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_132-3

Glossary

AFC

Alkaline fuel cell

EC

Electrocatalysis

FC

Fuel cell

GDE

Gas diffusion electrode

GDL

Gas diffusion layer

HOR

Hydrogen oxidation reaction

HT-PEFC

High temperature polymer electrolyte fuel cell

MCFC

Molten carbonate fuel cell

ORR

Oxygen reduction reaction

PAFC

Phosphoric acid fuel cell

PEFC

Polymer electrolyte fuel cell

SOFC

Solid oxide fuel cell

Definition of the Subject

Fuel cells are efficient energy converters, based on electrochemical principles. They convert the chemical energy (heating value) of a fuel directly into electricity, circumventing the various steps of thermal conversion and electricity generation. Fuel cells can be designed and constructed on the basis of a multitude of material combinations for electrolyte and electrodes, opening the choice of different fuels. The electrocatalytic reactions of fuel and oxygen are major challenges to obtain high conversion efficiency. The electrochemical basics of different fuel cell types considered today for technical...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    International Energy Agency (2011) Clean energy progress report, updated June 2011. International Energy Agency, ParisGoogle Scholar
  2. 2.
    OECD (2004) Hydrogen and fuel cells, review of National R&D Programs. International Energy Agency/OECD, Paris. ISBN 9789264108837Google Scholar
  3. 3.
    Shell International BV (2011) Shell energy scenarios to 2050, an era of volatile transitions. Shell International BV, The Hague. http://www-static.shell.com/static/aboutshell/downloads/aboutshell/signals_signposts.pdfGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Bossel U (2000) The birth of the fuel cell. European Fuel Cell Forum, Oberrohrdorf. ISBN 3-905592-06-1Google Scholar
  8. 8.
    Scherer GG (1990) Ber Bunsenges Phys Chem 94: 1008CrossRefGoogle Scholar
  9. 9.
    Hamman CH, Hamnett A, Vielstich W (1998) Electrochemistry. Wiley, WeinheimGoogle Scholar
  10. 10.
    Appleby AJ (1994) J Power Sources 49:15CrossRefGoogle Scholar
  11. 11.
    Uchida H, Tanaka S, Iwahara H (1985) J Appl Electrochem 15:93CrossRefGoogle Scholar
  12. 12.
    Haile SM (2003) Acta Mater 51:5981CrossRefGoogle Scholar
  13. 13.
    Merle G, Wessling M, Nijmeijer K (2011) J Membr Sci 377:1CrossRefGoogle Scholar
  14. 14.
    Kreuer K-D (2007) Proton conduction in fuel cells. In: Limbach HH, Schowen RL, Hynes JT, Klinman JP (eds) Hydrogen-transfer reactions, vol 1. Wiley, New York, pp 709–736Google Scholar
  15. 15.
    Gasteiger HA, Kocha SS, Sompali B, Wagner FT (2005) Appl Catal B Environ 56:9CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    Büchi FN, Paganelli G, Dietrich P, Laurent D, Tsukada A, Varenne P, Delfino A, Kötz R, Freunberger SA, Magne P-A, Walser D, Olsommer D (2007) Fuel Cells 07:329CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Electrochemistry LaboratoryPaul Scherrer InstituteVilligenSwitzerland