Skip to main content

Genotype by Environment Interactions in Livestock Farming

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Genotype by environment interaction:

The difference in response to environment changes due to different genotypes.

Breeding value:

Expected performance measured as deviation from the population mean of the progeny generated by a progenitor.

Phenotype:

Observable characteristics of an individual.

Resilience:

The ability to recover from stressful conditions.

Robustness:

The ability of not being perturbated by stressful conditions.

Tolerance:

The ability to cope with stressful conditions.

Plasticity:

The ability to change in response to environmental inputs.

Acclimation:

Increase of tolerance to stressful levels of environmental parameters.

Definition of the subject

Genotype by environment interaction, often referred to as “G × E,” is the phenomenon for which the breeding value of an individual depends on the environmental conditions and the effect of an environmental factor depends on the individual’s genetic background. A breeding program that accounts for GxE allows, among...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28(6):476–490

    CAS  Google Scholar 

  2. Henderson CR, Quaas RL (1976) Multiple trait evaluation using relatives’ records. J Anim Sci 43(6):1188–1197

    Google Scholar 

  3. Hill WG (2014) Applications of population genetics to animal breeding, from Wright, Fisher and Lush to genomic prediction. Genetics 196(1):1–16

    CAS  Google Scholar 

  4. Falconer DS (1952) The problem of environment and selection. Am Nat 86(830):293–298

    Google Scholar 

  5. Misztal I (2016) Resilience and lessons from studies in genetics of heat stress. J Anim Sci 94:197–197

    Google Scholar 

  6. Jinks JL, Pooni HS (1988) The genetic basis of environmental sensitivity. Proceedings of the Second International Conference on Quantitative Genetics

    Google Scholar 

  7. Mulder HA, Rönnegård L, Fikse WF, Veerkamp RF, Strandberg E (2013) Estimation of genetic variance for macro-and micro-environmental sensitivity using double hierarchical generalized linear models. Genet Sel Evol 45(1):1–14

    Google Scholar 

  8. Berghof TV, Poppe M, Mulder HA (2019) Opportunities to improve resilience in animal breeding programs. Front Genet 9:692

    Google Scholar 

  9. Hill WG, Mulder HA (2010) Genetic analysis of environmental variation. Genet Res 92(5-6):381–395

    Google Scholar 

  10. Mulder HA, Bijma P, Hill WG (2008) Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance. Genet Sel Evol 40(1):1–23

    Google Scholar 

  11. Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14(6):742–754

    Google Scholar 

  12. Meuwissen TH (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41(1):1–9

    Google Scholar 

  13. VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92(1):16–24

    CAS  Google Scholar 

  14. Windig JJ, Mulder HA, Bohthe-Wilhelmus DI, Veerkamp RF (2011) Simultaneous estimation of genotype by environment interaction accounting for discrete and continuous environmental descriptors in Irish dairy cattle. J Dairy Sci 94(6):3137–3147

    CAS  Google Scholar 

  15. Silva FF, Mulder HA, Knol EF, Lopes MS, Guimarìes SEF, Lopes PS et al (2014) Sire evaluation for total number born in pigs using a genomic reaction norms approach. J Anim Sci 92(9):3825–3834

    CAS  Google Scholar 

  16. Hayes BJ, Daetwyler HD, Goddard ME (2016) Models for genome x environment interaction: examples in livestock. Crop Sci 56(2251):2259. https://doi.org/10.2135/cropsci2015.07.0451

    Article  Google Scholar 

  17. Fikse F, Rekaya R, Weigel K (2003) Genotype by environment interaction for milk production traits in Guernsey cattle. Interbull Bulletin 27:9–9

    Google Scholar 

  18. Fikse WF, Rekaya R, Weigel KA (2003) Assessment of environmental descriptors for studying genotype by environment interaction. Livest Prod Sci 82(2-3):223–231

    Google Scholar 

  19. Mrode RA (2014) Linear models for the prediction of animal breeding values. Cabi.

    Google Scholar 

  20. Schaeffer LR (2004) Application of random regression models in animal breeding. Livest Prod Sci 86(1-3):35–45

    Google Scholar 

  21. Calus MPL, Groen AF, De Jong G (2002) Genotype x environment interaction for protein yield in Dutch dairy cattle as quantified by different models. J Dairy Sci 85(11):3115–3123

    CAS  Google Scholar 

  22. Gianola D, Van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178(4):2289–2303

    Google Scholar 

  23. Poppe M, Mulder HA, Veerkamp RF (2021) Validation of resilience indicators by estimating genetic correlations among daughter groups and with yield responses to a heat wave and disturbances at herd level. J Dairy Sci 104(7):8094–8106

    CAS  Google Scholar 

  24. Rönnegård L, Felleki M, Fikse F, Mulder HA, Strandberg E (2010) Genetic heterogeneity of residual variance—Estimation of variance components using double hierarchical generalized linear models. Genet Sel Evol 42:8

    Google Scholar 

  25. Rönnegård L, Valdar W (2011) Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 188:435–447

    Google Scholar 

  26. Rönnegård L, Valdar W (2012) Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet 13:63

    Google Scholar 

  27. van Pelt ML, de Jong G, Mulder HA (2016) Genotype by environment interaction for production, somatic cell score, workability, and conformation traits in Dutch Holstein-Friesian cows between farms with or without grazing. J Dairy Sci. https://doi.org/10.3168/jds.2015-10555

  28. Liu A, Su G, Höglund J, Zhang Z, Thomasen J, Christiansen I, Wang Y, Kargo M (2019) Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins. J Dairy Sci 102:8134–8147. https://doi.org/10.3168/jds.2018-15482

    Article  CAS  Google Scholar 

  29. Pfeiffer C, Fuerst C, Schwarzenbacher H, Fuerst-Waltl B (2016) Genotype by environment interaction in organic and conventional production systems and their consequences for breeding objectives in Austrian Fleckvieh cattle. Livest Sci 185:50–55

    Google Scholar 

  30. Shabalina T, Yin T, May K, König S (2021) Proofs for genotype by environment interactions considering pedigree and genomic data from organic and conventional cow reference populations. J Dairy Sci 104(4):4452–4466

    CAS  Google Scholar 

  31. Gerber A, Krogmeier D, Emmerling R, Götz KU (2018) Analysis of genotype by environment interaction for milk yield traits in first lactation of Simmental cattle. J Anim Breed Genet 125:382–389. https://doi.org/10.1111/j.1439-0388.2008.00731.x

    Article  Google Scholar 

  32. Huquet B, Leclerc H, Ducrocq V (2012) Modelling and estimation of genotype by environment interactions for production traits in French dairy cattle. Genet Sel Evol. https://doi.org/10.1186/1297-9686-44-35

  33. Schmid M, Imortjust A, Emmerling R, Fuerst C, Hamann H, Bennewitz J (2021) Genotype-by-environment interactions at the trait level and total merit index level for milk production and functional traits in Brown Swiss cattle. Animal 15:100052. https://doi.org/10.1016/j.animal.2020.100052

    Article  CAS  Google Scholar 

  34. Santos JC, Henrique C, Malhado M, Cobuci JA, Paulo M, De Rezende G, Luiz P, Carneiro S (2020) Genotype-environment interaction for productive traits of Holstein cows in Brazil described by reaction norms. Trop Anim Health Prod 52:2425–2432

    Google Scholar 

  35. Mulim HA, Fernando L, Pinto B, Valloto AA, Pedrosa VB (2021) Genotype by environment interaction for somatic cell score in Holstein cattle of southern Brazil via reaction norms. Anim Biosci 34:499–505

    CAS  Google Scholar 

  36. Mulim HA, Luiz P, Carneiro S, Henrique C, Malhado M, Fernando L, Pinto B, Mourno GB, Valloto AA, Pedrosa VB (2021) Genotype by environment interaction for fat and protein yields via reaction norms in Holstein cattle of southern Brazil. J Dairy Res 88(16):22

    Google Scholar 

  37. Bohlouli M, Yin T, Hammami H, Gengler N, König S (2021) Climate sensitivity of milk production traits and milk fatty acids in genotyped Holstein dairy cows. J Dairy Sci 104:6847–6860. https://doi.org/10.3168/jds.2020-19411

    Article  CAS  Google Scholar 

  38. Ravagnolo O, Misztal I, Hoogenboom G (2000) Genetic component of heat stress in dairy cattle, development of heat index function. J Dairy Sci 83(9):2120–2125

    CAS  Google Scholar 

  39. Carrara ER, Petrini J, Sulvian M, de Oliveira HR, Gregori AR, de Souza Iung LH, Miquilini M, Machado PF, Mourno GB (2021) Genetic parameters for milk yield and quality traits of Brazilian Holstein cows as a function of temperature and humidity index. J Anim Breed Genet. https://doi.org/10.1111/jbg.12636

  40. Negri R, Aguilar I, Feltes GL, Araujo Cobuci J (2021) Selection for test-day milk yield and thermotolerance in Brazilian Holstein Cattle. Animals 11(1):13

    Google Scholar 

  41. Ansari-Mahyari S, Ojali MR, Forutan M, Riasi A, Brito LF (2019) Investigating the genetic architecture of conception and non-return rates in Holstein cattle under heat stress conditions. Trop Anim Health Prod 51(1847):853

    Google Scholar 

  42. Nguyen TT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    CAS  Google Scholar 

  43. Cheruiyot EK, Nguyen TTT, Haile-Mariam M, Cocks BG, Abdelsayed M, Pryce JE (2020) Genotype-by-environment (temperature-humidity) interaction of milk production traits in Australian Holstein cattle. J Dairy Sci 103(2460):2476. https://doi.org/10.3168/jds.2019-17609

    Article  CAS  Google Scholar 

  44. Strandberg E, Brotherstone S, Wall E, Coffey MP (2009) Genotype by environment interaction for first-lactation female fertility traits in uK dairy cattle. J Dairy Sci 92:3437–3446. https://doi.org/10.3168/jds.2008-1844

    Article  CAS  Google Scholar 

  45. Ismael A, Strandberg E, Berglund B, Kargo M, Fogh A, Lövendahl P (2016) Genotype by environment interaction for activity-based estrus traits in relation to production level for Danish Holstein. J Dairy Sci. https://doi.org/10.3168/jds.2016-11446

  46. Lassen J, Mark T (2008) Short communication: Genotype by housing interaction for conformation and workability traits in Danish Holsteins. J Dairy Sci 91:4424–4428. https://doi.org/10.3168/jds.2008-1116

    Article  CAS  Google Scholar 

  47. Tiezzi F, de Los Campos G, Gaddis KP, Maltecca C (2017) Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle. J Dairy Sci 100(3):2042–2056

    CAS  Google Scholar 

  48. Clay JS, Vinson WE, White JM (1979) Heterogeneity of daughter variances of sires for milk yield. J Dairy Sci 62(6):985–989

    Google Scholar 

  49. Rönnegård L, Felleki M, Fikse WF, Mulder HA, Strandberg E (2013) Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle. J Dairy Sci 96(4):2627–2636

    Google Scholar 

  50. Paulo M, De Rezende G, Henrique C, Malhado M, Bi S, Luiz P, Carneiro S, Adriàn J, Bozzi R (2020) Genotype-environment interaction for age at fi rst calving in Limousine and Charolais cattle raised in Italy, employing reaction norm model. Livest Res Rural Dev 232:103912. https://doi.org/10.1016/j.livsci.2019.103912

    Article  Google Scholar 

  51. Cardoso FF, Tempelman RJ (2012) Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction. J Anim Sci 90:2130–2141. https://doi.org/10.2527/jas.2011-4333

    Article  CAS  Google Scholar 

  52. de Lima Silva T, Carneiro PLS, Ambrosini DP, Lobo RB, Filho RM, Malhado CHM (2019) Genotype-environment interaction in the genetic variability analysis of reproductive traits in Nellore cattle. Livest Sci 230:103825. https://doi.org/10.1016/j.livsci.2019.103825

    Article  Google Scholar 

  53. Toghiani S, Hay E, Fragomeni B, Rekaya R, Roberts AJ (2020) Genotype by environment interaction in response to cold stress in a composite beef cattle breed. Animal 14(1576):587. https://doi.org/10.1017/S1751731120000531

    Article  CAS  Google Scholar 

  54. Neves HHR, Carvalheiro R, Roso VM, Queiroz SA (2011) Genetic variability of residual variance of production traits in Nellore beef cattle. Livest Sci 142(1-3):164–169

    Google Scholar 

  55. Neves HH, Carvalheiro R, Queiroz SA (2012) Genetic and environmental heterogeneity of residual variance of weight traits in Nellore beef cattle. Genet Sel Evol 44(1):1–12

    Google Scholar 

  56. Chen S-Y, Freitas PH, Oliveira HR, Lázaro SF, Huang YJ, Howard JT et al (2021) Genotype-by-environment interactions for reproduction, body composition, and growth traits in maternal-line pigs based on single-step genomic reaction norms. Genet Sel Evol 53

    Google Scholar 

  57. Song H, Zhang Q, Misztal I, Ding X (2020) Genomic prediction of growth traits for pigs in the presence of genotype by environment interactions using single-step genomic reaction norm model. J Anim Breed Genet 137:523–534

    Google Scholar 

  58. Zumbach B, Misztal I, Tsuruta S, Sanchez JP, Azain M, Herring W, Holl J, Long T, Culbertson M (2008) Genetic components of heat stress in finishing pigs: development of a heat load function. J Anim Sci 86:2082–2088

    CAS  Google Scholar 

  59. Fragomeni BO, Lourenco DAL, Tsuruta S, Bradford HL, Gray KA, Huang Y, Misztal I (2016) Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs. J Anim Sci 94:5004–5013

    CAS  Google Scholar 

  60. Tiezzi F, Brito LF, Howard J, Huang YJ, Gray K, Schwab C, Fix J, Maltecca C (2020) Genomics of Heat tolerance in reproductive performance investigated in four independent maternal lines of pigs. Front Genet 11:629

    CAS  Google Scholar 

  61. Usala M, Macciotta NP, Bergamaschi M, Maltecca C, Fix J, Schwab C, Shull C, Tiezzi F (2021) Genetic parameters for tolerance to heat stress in crossbred swine carcass traits. Front Genet 11:612815

    Google Scholar 

  62. Mulder HA, Hill WG, Vereijken A, Veerkamp RF (2009) Estimation of genetic variation in residual variance in female and male broiler chickens. Animal 3(12):1673–1680

    CAS  Google Scholar 

  63. Berghof TV, Bovenhuis H, Mulder HA (2019) Body weight deviations as indicator for resilience in layer chickens. Front Genet 10:1216

    CAS  Google Scholar 

  64. Gutièrrez JP, Nieto B, Piqueras P, Ibanez N, Salgado C (2006) Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genet Sel Evol 38(5):1–18

    Google Scholar 

  65. Garreau H, Bolet G, Larzul C, Robert-Granie C, Saleil G, SanCristobal M, Bodin L (2008) Results of four generations of a canalising selection for rabbit birth weight. Livest Sci 119(1-3):55–62

    Google Scholar 

  66. Mota RR, Lopes PS, Tempelman RJ, Silva FF, Aguilar I, Gomes CCG, Cardoso FF (2016) Genome-enabled prediction for tick resistance in Hereford and Braford beef cattle via reaction norm models. J Anim Sci 94:1834–1843. https://doi.org/10.2527/jas.2015-0194

    Article  CAS  Google Scholar 

  67. Su G, Madsen P, Lund MS, Sorensen D, Korsgaard IR, Jensen J (2006) Bayesian analysis of the linear reaction norm model with unknown covariates. J Anim Sci 84(7):1651–1657

    CAS  Google Scholar 

  68. Shariati MM, Su G, Madsen P, Sorensen D (2007) Analysis of milk production traits in early lactation using a reaction norm model with unknown covariates. J Dairy Sci 90(12):5759–5766

    CAS  Google Scholar 

  69. Su G, Madsen P, Lund MS (2009) Reaction norm model with unknown environmental covariate to analyze heterosis by environment interaction. J Dairy Sci 92(5):2204–2213

    CAS  Google Scholar 

  70. Knap PW, Su G (2008) Genotype by environment interaction for litter size in pigs as quantified by reaction norms analysis. Animal 2(12):1742–1747

    CAS  Google Scholar 

  71. Mulder HA, Bijma P (2005) Effects of genotype x environment interaction on genetic gain in breeding programs. J Anim Sci 83(1):49–61

    CAS  Google Scholar 

  72. Mulder HA, Veerkamp RF, Ducro BJ, Van Arendonk JAM, Bijma P (2006) Optimization of dairy cattle breeding programs for different environments with genotype by environment interaction. J Dairy Sci 89(5):1740–1752

    CAS  Google Scholar 

  73. Rauw WM, Gomez-Raya L (2015) Genotype by environment interaction and breeding for robustness in livestock. Front Genet 6(1):15. https://doi.org/10.3389/fgene.2015.00310

    Article  CAS  Google Scholar 

  74. Mulder HA (2016) Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions. Front Genet 7(1):11. https://doi.org/10.3389/fgene.2016.00178

    Article  CAS  Google Scholar 

  75. Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(707):728

    Google Scholar 

  76. Colditz IG, Hine BC (2016) Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci 56(12):1961–1983

    Google Scholar 

  77. Polsky L, von Keyserlingk MA (2017) Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci 100(11):8645–8657

    CAS  Google Scholar 

  78. Jarquìn D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127(3):595–607

    Google Scholar 

  79. Cao L, Liu H, Mulder HA, Henryon M, Thomasen JR, Kargo M, Sörensen AC (2020) Genomic breeding programs realize larger benefits by cooperation in the presence of genotype x environment interaction than conventional breeding programs. Front Genet 11:251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Maltecca .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tiezzi, F., Maltecca, C. (2022). Genotype by Environment Interactions in Livestock Farming. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1115-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics