Glossary
- Airmass:
-
Amount of air in the atmosphere through which sunlight passes
- AM0:
-
Spectral reference for space applications
- AM 1:
-
Spectral reference for terrestrial applications, zenith incidence
- AM 1.5:
-
Spectral reference for terrestrial applications, sloping incidence
- Blackbody:
-
An ideal heat radiation emitter
- CSP:
-
Concentrated solar power
- Flux:
-
Irradiation density or density of radiative heat flow
- HFSS:
-
High-flux solar simulator
- IR:
-
Infrared electromagnetic radiation
- LED:
-
Light-emitting diode
- OFR:
-
Ozone free
- Peak flux:
-
The highest flux concentration
- PV:
-
Photovoltaics
- UV:
-
Ultraviolet electromagnetic radiation
Definition of the Subject
Solar simulators are devices that are designed to create a temporally stable radiation with a spectrum close to the real sunlight. The main advantage of solar simulators compared to the real sunlight is their temporal stability and independency of daytime and weather conditions. They are essential for the research of photovoltaic cells, receivers,...
Bibliography
Green M (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189
Wang W (2014) Simulate a ‘sun’ for solar research: a literature review of solar simulator technology. Department of Energy Technology, Royal Institute of Technology, Stockholm
Ekman BM, Brooks G, Rhamdhani MA (2016) Development of high flux solar simulators for solar thermal research. In: Jha A et al (eds) Energy technology 2015: carbon dioxide management and other technologies. Springer International Publishing, Cham, pp 149–159
Petrasch J et al (2006) A novel 50kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps. J Sol Energy Eng 129(4):405–411
International, A (2016) ASTM E948-16, standard test method for electrical performance of photovoltaic cells using reference cells under simulated sunlight, West Conshohocken
Laboratory, N.R.E. (2000) ASTM standard extraterrestrial spectrum reference E-490-00
Laboratory, T.N.R.E. (2000) Reference solar spectral irradiance: air mass 1.5. Available from: https://rredc.nrel.gov/solar//spectra/am1.5/
Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. In: Meyers RA (ed) Encyclopedia of physical science & technology. Academic, pp 237–256
Wieghardt K et al (2018) Synlight - A new facility for large-scale testing in CSP and solar chemistry. AIP Conference Proceedings 2033, 040042; https://doi.org/10.1063/1.5067078
Levêque G et al (2016) Experimental and numerical characterization of a new 45 kWel multisource high-flux solar simulator. Opt Express 24(22):A1360
Alami AH, Aokal K (2017) Experiments on polymer welding via concentrated solar energy. Int J Adv Manuf Technol 92(9–12):3715–3724
Unvala BA, Maries A (1974) Radiant heating using an ellipsoidal reflector. J Phys E: Sci Inst 7(5):349–350
Al-Ahmad et al (2018) Novel LED artificial sunlight for therapy applications. Centre for Brain and Mental Health Research’s Eleventh Annual Postgraduate and Postdoctoral Conference Friday August 3rd 2018 at HMRI Building, University of Newcastle
Group, S. (2020) [cited 2020 17.02.2020]. Sunlight simulation. Available from: https://www.suntechgroup.se/en-GB/products-40623057
Infenion (2020) [cited 2020 24.03.2020]. LEDs in urban farming. Available from: https://www.infineon.com/cms/en/discoveries/LEDs-in-Urban-Farming/
Tawfik M, Tonnellier X, Sansom C (2018) Light source selection for a solar simulator for thermal applications: a review. Renew Sust Energ Rev 90:802
Jaworske DA, Jefferies KS, Mason LS (1996) Alignment and initial operation of an advanced solar simulator. J Spacecr Rocket 33(6):867
Thomas N et al (2011) A wide-beam continuous solar simulator for simulating the solar flux at the orbit of Mercury. Meas Sci Technol 22:065903
Al-Ahmad A et al (2019) Progress_in_Photovoltaics__Research_and_Applications.pdf
Bogus K (1974) Spectral match of sun simulators required for measuring today’s solar cells. Photovoltaic Power Generation
Böhm M, Scheer HC, Wagemann HG (1985) Solar simulator measurement system for large-area solar cells at standard test conditions. Energy Convers Manag 25(1):105–113
Newport Corporation (2020) VeraSol-2 LED class AAA solar simulator. Available from: https://www.newport.com/f/class-aaa-led-solar-simulators
GmbH, W.S.M.S.e. (2015) Data sheet SINUS-220
Newport Corporation (2020) [cited 2020 08.03.2020]. Sol3A class AAA solar simulators. Available from: https://www.newport.com/f/class-aaa-solar-simulators
B.V., E.S. (2020) [cited 2020 17.02.2020]. Eternal Sun B.V. website. Available from: https://eternalsunspire.com/
Al-Ahmad A et al (2018) Modular LED arrays for large area solar simulation. Prog Photovolt Res Appl 27:179
López-Fraguas E, Sánchez-Pena J, Vergaz R (2019) A low-cost LED-based solar simulator. IEEE Trans Instrum Meas 68:4913–4923
Salam R et al (2019) A simple solar simulator with highly stable controlled irradiance for solar panel characterization. Meas Control 52:002029401982732
Linden K, Neal WR, Serreze H (2014) Adjustable spectrum LED solar simulator. SPIE Photonics West Conference 9003 Proceedings paper 43
Watjanatepin N (2017) Design construct and evaluation of six- spectral LEDs-based solar simulator based on IEC 60904-9. Int J Eng Technol 9:923–931
Grandi G, Ienina A, Bardhi M (2014) Effective low-cost hybrid LED-halogen solar simulator. IEEE Trans Ind Appl 50:3055–3064
Koós D, Iski P, Skibanek A, Bodnár I (2019) Designing procedure of LED-halogen hybrid solar simulator for small size solar cell testing. In: Ali MA, Platko P (eds) Advances and trends in engineering sciences and technologies III: proceedings of the 3rd international conference on engineering sciences and technologies (ESaT 2018), September 12–14, 2018. CRC Press, Tatranské Matliare
Anon Namin CJ, Chenvidhya D, Kirtikara K, Thongpron J (2012) Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell I-V characterization and electrical parameters determination. Int J Photoenergy 2012:9
Yandri E (2019) Dataset of the PV surface temperature distribution when generating electricity (PV-On) and without generating electricity (PV-Off) using halogen solar simulator. Data Brief 27:104578
Soetedjo A et al (2016) Solar simulator using halogen lamp for PV research. In: Proceedings of second international conference on electrical systems, technology and information 2015 (ICESTI 2015), pp 239–245
Dennis T, Schlager J, Bertness K (2014) A novel solar simulator based on a supercontinuum laser for solar cell device and materials characterization. IEEE J Photovolt 4:1119–1127
Llenas A, Carreras J (2019) Arbitrary spectral matching using multi-LED lighting systems. Opt Eng 58:1
Codd DS et al (2010) A low cost high flux solar simulator. Sol Energy 84(12):2202–2212
Dibowski G et al (2007) Der neue Hochleistungsstrahler des DLR – Grundlagen. Technik, Anwendung
Xu J et al (2016) Design, construction, and characterization of an adjustable 70 kW high-flux solar simulator. J Sol Energy Eng 138:041010
Abuseada M, Ophoff C, Ozalp N (2019) Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique. ASME J Sol Energy Eng 141(2):021005. https://doi.org/10.1115/1.4042246
Martínez L et al (2019) Optical improvement for modulating a high flux solar simulator designed for solar thermal and thermochemical research. Appl Opt 58:2605
Wang W et al (2014) Design and validation of a low-cost high-flux solar simulator using Fresnel lens concentrators. Energy Procedia 49:2221–2230
Laaber D et al (2019) One year with synlight – review of operating experience. AIP Conf Proc 2126(1):170007
Sayre RM, Dowdy JC (2010) Examination of solar simulators used for the determination of sunscreen UVA efficacy. Photochem Photobiol 86(1):162–167
Benedetti F (2018) Rate of switch from bipolar depression into mania after morning light therapy: a historical review. Psychiatry Res 261:351
GmbH, I.-I.U.F. (2020) [17.05.2020]. We’re the infarmers and your city is our farm. Available from: https://www.infarm.com/
Dutta Gupta S, Agarwal A (2017) Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. pp 1–25
PV lighthouse (2020) [cited 2020 02.04.2020]. The air mass (AM). Available from: https://www2.pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/The%20air%20mass%20(AM).aspx
Goldman A, Reid J, Rothman L (1981) Identification of electric quadrupole O2 and N2 lines in the infrared atmospheric absorption spectrum due to the vibration-rotation fundamentals. Geophys Res Lett 8:77
Sobek S, Werle S (2019) Comparative review of artificial light sources for solar-thermal biomass conversion research applications. Ecol Chem Eng S 26:443–453
Leary GP (2016) Comparison of xenon lamp-based and led-based solar simulators. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Montana State University Bozeman, Montana
Newport Corporation (2020) [cited 2020 08.04.2020]. Simulation of solar radiation. Available from: https://www.newport.com/n/simulation-of-solar-irradiation
Lueger O (1904) Bogenlampen. In: Lexikon der gesamten Technik. Deutsche Verlags-Anstalt, Stuttgart
OSRAM GmbH (2020) XBO for cinema projection product family sheet, available at https://www.osram.com/appsj/pdc/pdf.do?cid=GPS01_1028548&vid=PP_EUROPE_Europe_eCat&lid=EN&mpid=
Spa I (2020) [12.04.2020] AS series H. V. Igniters for short arc xenon lamps. Available from: https://www.irem.it/en/illuminazione-professionale/xenon-lamps/as-series/
GmbH, O. (2020) XBO 7000 W/HS XL OFR
Inc., U.A. (2020) DXL digital xenon lamps. Available from: https://www.ushio.com/product/dxl-and-uxl-for-nec-digital-cinema-projectors/
Dibowski G, Esser K (2017) Hazards caused by UV rays of xenon light based high performance solar simulators. Saf Health Work 8(3):237–245
Ushio USA Inc. (2020) Metal halide lamps
Ushio USA Inc. (2020) UMH metal halide
Miebach M (2016) Gas discharge light sources. University of Applied Sciences, Münster
Schubert F, Spinner D (2016) Solar simulator spectrum and measurement uncertainties. Energy Procedia 92:205–210
Newport Corporation (2020) [14.04.2020] Mercury (Hg) arc lamps. Available from: https://www.newport.com/f/mercury-arc-lamps
Newport Corporation, Oriel product training – spectral irradiance. Newport Corporation
Barnes NP, Remelius DK (1985) Argon arc lamps. Appl Opt 24(13):1947–1949
Hooker JD (1975) Spectral lamp – noble gas – argon. Spec sheet for Philips LL Spectral Lamp. Available at http://www.lamptech.co.uk/SpecSheets/DSPPhilipsLLAr.htm
MacIssac D, Kanner G, Anderson G (1999) Basic physics of the incandescent lamp (lightbulb). Phys Teach 37:520
Ushio (2020) Spec sheet of SPH™ 575WHalogen lamp, sph-575w.pdf, Editor
KGaA, H.G.C. (2020) [11.04.2020] LED headlights. Available from: https://www.hella.com/techworld/us/Technical/Automotive-lighting/LED-headlights-833/
Almanza R, Martínez I (2012) Solar mirrors. Solar Power, Radu D. Rugescu, IntechOpen. https://doi.org/10.5772/28524. Available from: https://www.intechopen.com/books/solar-power/solarmirrors
Good P et al (2015) Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators. Data Brief 6:184
Division, M.R.E. (2012) 3M™ solar mirror film 1100
Watson M et al (2001) Fresnel lens, NASA Technical reports, Document ID 20010048754
Inc., E.O. (2018) [27.04.2020] Advantages of Fresnel lenses. Available from: https://www.edmundoptics.de/knowledge-center/application-notes/optics/advantages-of-fresnel-lenses/
Inc., F.T. (1996–2014) Fresnel lenses
Cotfas DT et al (2015) Ageing of photovoltaic cells under concentrated light. In: 2015 international Aegean conference on electrical machines & power electronics (ACEMP), 2015 international conference on optimization of electrical & electronic equipment (OPTIM) & 2015 international symposium on advanced electromechanical motion systems (ELECTROMOTION)
Inc., N. (2020) User’s guide LED solar simulator VeraSol
Newport Corporation (2020) VeraSol-2 LED class AAA solar simulator
Sapozhnikov SZ, Mityakov VY, Mityakov A. (2020) Heat Flux Measurement and Heat Flux Sensor. In: Heatmetry. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-40854-1_1
Corporation, V. (2020) Thermogage. Available from: http://www.vatell.com/node/4
Guillot E et al (2014) Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement. Energy Procedia 49:2090–2099
Ballestrín J (2001) Direct heat-flux measurement system (MDF) for solar central receiver evaluation, Informes Técnicos Ciemat 961, Editorial CIEMAT
Röger M et al (2014) Techniques to measure solar flux density distribution on large-scale receivers. J Sol Energy Eng 136:031013-1
Thelen M et al (2016) Entwicklungslinien zur Flussdichtemesstechnik der DLR-Solarforschung. In: Sonnenkolloquium, DLR e.V. Cologne
Ballestrin J et al (2003) Systematic error in the measurement of very high solar irradiance. Sol Energy Mater Sol Cells 80(3):375–381
Krueger KR, Davidson JH, Lipiński W (2011) Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research. ASME J Sol Energy Eng 133(1):011013. https://doi.org/10.1115/1.4003298
Martínez L et al (2018) A 17.5 kW el high flux solar simulator with controllable flux-spot capabilities: design and validation study. Sol Energy 170:807
Sarwar J et al (2014) Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol Energy 100:179–194
Nakakura M et al (2015) Development of a receiver evaluation system using 30 kWth point concentration solar simulator. Energy Procedia 69:497–505
Further Reading
Alxneit I (2012) Error analysis of the radiative power determined from flux distributions measured with a camera in a Xe arc lamp-based solar simulator. J Sol Energy Eng 134(4)
Atia D et al (2018) Spectral irradiance estimation of light emitting diode solar simulator based on genetic algorithm. Res J Appl Sci Eng Technol 15:227–235
Fend T et al (2003) Comparative assessment of solar concentrator materials. Sol Energy 74(2):149–155
Halliop B et al (2010) A dynamic model of a high-temperature arc lamp. IEEE Trans Ind Appl 46(6):2233–2242
He Y-L et al (2020) Perspective of concentrating solar power. Energy 198
IEC – International Electrotechnical Commission (2007) International standard Norme Internationale, photovoltaic devices – part 9: solar simulator performance requirements. 60904-9 Edition 2.02007-10
Ihara T et al (2016) Accelerated aging of treated aluminum for use as a cool colored material for facades. Energ Buildings 112:184–197
Imenes A et al (2006) Ray tracing and flux mapping as a design and research tool at the National Solar Energy Centre. ANZSES 2006. Canberra
Jamali H (2019) Investigation and review of mirrors reflectance in parabolic trough solar collectors (PTSCs). Energy Rep 5:145–158
Li J et al (2014) Optical analysis of a hexagonal 42kWe high-flux solar simulator. Energy Procedia 57:590
Lovegrove K et al (2010) Solar mirror panels and their manufacture. International patent, WO 2010/115237 A1
Michael DiGrazia G. J Recflectech mirror film: design flexibility and durability in reflecting solar applications. https://docplayer.net/30266503-Reflectech-mirror-film-design-flexibility-and-durability-in-reflecting-solar-applications.html
Offergeld M et al (2019) Flux density measurement for industrial-scale solar power towers using the reflection off the absorber. SolarPACES conference. Casablanca, 2126, pp 1–8
Răboacă M et al (2019) Concentrating solar power technologies. Energies 12:1048
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Science+Business Media, LLC, part of Springer Nature
About this entry
Cite this entry
Laaber, D. (2021). Solar Simulators. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1055-1
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2493-6_1055-1
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2493-6
Online ISBN: 978-1-4939-2493-6
eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences