Skip to main content

Solar Simulators

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 84 Accesses

Glossary

Airmass:

Amount of air in the atmosphere through which sunlight passes

AM0:

Spectral reference for space applications

AM 1:

Spectral reference for terrestrial applications, zenith incidence

AM 1.5:

Spectral reference for terrestrial applications, sloping incidence

Blackbody:

An ideal heat radiation emitter

CSP:

Concentrated solar power

Flux:

Irradiation density or density of radiative heat flow

HFSS:

High-flux solar simulator

IR:

Infrared electromagnetic radiation

LED:

Light-emitting diode

OFR:

Ozone free

Peak flux:

The highest flux concentration

PV:

Photovoltaics

UV:

Ultraviolet electromagnetic radiation

Definition of the Subject

Solar simulators are devices that are designed to create a temporally stable radiation with a spectrum close to the real sunlight. The main advantage of solar simulators compared to the real sunlight is their temporal stability and independency of daytime and weather conditions. They are essential for the research of photovoltaic cells, receivers,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Green M (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189

    Article  CAS  Google Scholar 

  2. Wang W (2014) Simulate a ‘sun’ for solar research: a literature review of solar simulator technology. Department of Energy Technology, Royal Institute of Technology, Stockholm

    Google Scholar 

  3. Ekman BM, Brooks G, Rhamdhani MA (2016) Development of high flux solar simulators for solar thermal research. In: Jha A et al (eds) Energy technology 2015: carbon dioxide management and other technologies. Springer International Publishing, Cham, pp 149–159

    Google Scholar 

  4. Petrasch J et al (2006) A novel 50kW 11,000 suns high-flux solar simulator based on an array of xenon arc lamps. J Sol Energy Eng 129(4):405–411

    Article  CAS  Google Scholar 

  5. International, A (2016) ASTM E948-16, standard test method for electrical performance of photovoltaic cells using reference cells under simulated sunlight, West Conshohocken

    Google Scholar 

  6. Laboratory, N.R.E. (2000) ASTM standard extraterrestrial spectrum reference E-490-00

    Google Scholar 

  7. Laboratory, T.N.R.E. (2000) Reference solar spectral irradiance: air mass 1.5. Available from: https://rredc.nrel.gov/solar//spectra/am1.5/

  8. Steinfeld A, Palumbo R (2001) Solar thermochemical process technology. In: Meyers RA (ed) Encyclopedia of physical science & technology. Academic, pp 237–256

    Google Scholar 

  9. Wieghardt K et al (2018) Synlight - A new facility for large-scale testing in CSP and solar chemistry. AIP Conference Proceedings 2033, 040042; https://doi.org/10.1063/1.5067078

  10. Levêque G et al (2016) Experimental and numerical characterization of a new 45 kWel multisource high-flux solar simulator. Opt Express 24(22):A1360

    Article  Google Scholar 

  11. Alami AH, Aokal K (2017) Experiments on polymer welding via concentrated solar energy. Int J Adv Manuf Technol 92(9–12):3715–3724

    Article  Google Scholar 

  12. Unvala BA, Maries A (1974) Radiant heating using an ellipsoidal reflector. J Phys E: Sci Inst 7(5):349–350

    Article  Google Scholar 

  13. Al-Ahmad et al (2018) Novel LED artificial sunlight for therapy applications. Centre for Brain and Mental Health Research’s Eleventh Annual Postgraduate and Postdoctoral Conference Friday August 3rd 2018 at HMRI Building, University of Newcastle

    Google Scholar 

  14. Group, S. (2020) [cited 2020 17.02.2020]. Sunlight simulation. Available from: https://www.suntechgroup.se/en-GB/products-40623057

  15. Infenion (2020) [cited 2020 24.03.2020]. LEDs in urban farming. Available from: https://www.infineon.com/cms/en/discoveries/LEDs-in-Urban-Farming/

  16. Tawfik M, Tonnellier X, Sansom C (2018) Light source selection for a solar simulator for thermal applications: a review. Renew Sust Energ Rev 90:802

    Article  Google Scholar 

  17. Jaworske DA, Jefferies KS, Mason LS (1996) Alignment and initial operation of an advanced solar simulator. J Spacecr Rocket 33(6):867

    Article  Google Scholar 

  18. Thomas N et al (2011) A wide-beam continuous solar simulator for simulating the solar flux at the orbit of Mercury. Meas Sci Technol 22:065903

    Article  CAS  Google Scholar 

  19. Al-Ahmad A et al (2019) Progress_in_Photovoltaics__Research_and_Applications.pdf

    Google Scholar 

  20. Bogus K (1974) Spectral match of sun simulators required for measuring today’s solar cells. Photovoltaic Power Generation

    Google Scholar 

  21. Böhm M, Scheer HC, Wagemann HG (1985) Solar simulator measurement system for large-area solar cells at standard test conditions. Energy Convers Manag 25(1):105–113

    Article  Google Scholar 

  22. Newport Corporation (2020) VeraSol-2 LED class AAA solar simulator. Available from: https://www.newport.com/f/class-aaa-led-solar-simulators

  23. GmbH, W.S.M.S.e. (2015) Data sheet SINUS-220

    Google Scholar 

  24. Newport Corporation (2020) [cited 2020 08.03.2020]. Sol3A class AAA solar simulators. Available from: https://www.newport.com/f/class-aaa-solar-simulators

  25. B.V., E.S. (2020) [cited 2020 17.02.2020]. Eternal Sun B.V. website. Available from: https://eternalsunspire.com/

  26. Al-Ahmad A et al (2018) Modular LED arrays for large area solar simulation. Prog Photovolt Res Appl 27:179

    Article  Google Scholar 

  27. López-Fraguas E, Sánchez-Pena J, Vergaz R (2019) A low-cost LED-based solar simulator. IEEE Trans Instrum Meas 68:4913–4923

    Article  Google Scholar 

  28. Salam R et al (2019) A simple solar simulator with highly stable controlled irradiance for solar panel characterization. Meas Control 52:002029401982732

    Article  Google Scholar 

  29. Linden K, Neal WR, Serreze H (2014) Adjustable spectrum LED solar simulator. SPIE Photonics West Conference 9003 Proceedings paper 43

    Google Scholar 

  30. Watjanatepin N (2017) Design construct and evaluation of six- spectral LEDs-based solar simulator based on IEC 60904-9. Int J Eng Technol 9:923–931

    Article  CAS  Google Scholar 

  31. Grandi G, Ienina A, Bardhi M (2014) Effective low-cost hybrid LED-halogen solar simulator. IEEE Trans Ind Appl 50:3055–3064

    Article  Google Scholar 

  32. Koós D, Iski P, Skibanek A, Bodnár I (2019) Designing procedure of LED-halogen hybrid solar simulator for small size solar cell testing. In: Ali MA, Platko P (eds) Advances and trends in engineering sciences and technologies III: proceedings of the 3rd international conference on engineering sciences and technologies (ESaT 2018), September 12–14, 2018. CRC Press, Tatranské Matliare

    Google Scholar 

  33. Anon Namin CJ, Chenvidhya D, Kirtikara K, Thongpron J (2012) Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell I-V characterization and electrical parameters determination. Int J Photoenergy 2012:9

    Google Scholar 

  34. Yandri E (2019) Dataset of the PV surface temperature distribution when generating electricity (PV-On) and without generating electricity (PV-Off) using halogen solar simulator. Data Brief 27:104578

    Article  Google Scholar 

  35. Soetedjo A et al (2016) Solar simulator using halogen lamp for PV research. In: Proceedings of second international conference on electrical systems, technology and information 2015 (ICESTI 2015), pp 239–245

    Google Scholar 

  36. Dennis T, Schlager J, Bertness K (2014) A novel solar simulator based on a supercontinuum laser for solar cell device and materials characterization. IEEE J Photovolt 4:1119–1127

    Article  Google Scholar 

  37. Llenas A, Carreras J (2019) Arbitrary spectral matching using multi-LED lighting systems. Opt Eng 58:1

    Google Scholar 

  38. Codd DS et al (2010) A low cost high flux solar simulator. Sol Energy 84(12):2202–2212

    Article  Google Scholar 

  39. Dibowski G et al (2007) Der neue Hochleistungsstrahler des DLR – Grundlagen. Technik, Anwendung

    Google Scholar 

  40. Xu J et al (2016) Design, construction, and characterization of an adjustable 70 kW high-flux solar simulator. J Sol Energy Eng 138:041010

    Article  CAS  Google Scholar 

  41. Abuseada M, Ophoff C, Ozalp N (2019) Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique. ASME J Sol Energy Eng 141(2):021005. https://doi.org/10.1115/1.4042246

  42. Martínez L et al (2019) Optical improvement for modulating a high flux solar simulator designed for solar thermal and thermochemical research. Appl Opt 58:2605

    Article  Google Scholar 

  43. Wang W et al (2014) Design and validation of a low-cost high-flux solar simulator using Fresnel lens concentrators. Energy Procedia 49:2221–2230

    Article  CAS  Google Scholar 

  44. Laaber D et al (2019) One year with synlight – review of operating experience. AIP Conf Proc 2126(1):170007

    Article  Google Scholar 

  45. Sayre RM, Dowdy JC (2010) Examination of solar simulators used for the determination of sunscreen UVA efficacy. Photochem Photobiol 86(1):162–167

    Article  CAS  Google Scholar 

  46. Benedetti F (2018) Rate of switch from bipolar depression into mania after morning light therapy: a historical review. Psychiatry Res 261:351

    Article  Google Scholar 

  47. GmbH, I.-I.U.F. (2020) [17.05.2020]. We’re the infarmers and your city is our farm. Available from: https://www.infarm.com/

  48. Dutta Gupta S, Agarwal A (2017) Artificial lighting system for plant growth and development: chronological advancement, working principles, and comparative assessment. pp 1–25

    Google Scholar 

  49. PV lighthouse (2020) [cited 2020 02.04.2020]. The air mass (AM). Available from: https://www2.pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/The%20air%20mass%20(AM).aspx

  50. Goldman A, Reid J, Rothman L (1981) Identification of electric quadrupole O2 and N2 lines in the infrared atmospheric absorption spectrum due to the vibration-rotation fundamentals. Geophys Res Lett 8:77

    Article  CAS  Google Scholar 

  51. Sobek S, Werle S (2019) Comparative review of artificial light sources for solar-thermal biomass conversion research applications. Ecol Chem Eng S 26:443–453

    Google Scholar 

  52. Leary GP (2016) Comparison of xenon lamp-based and led-based solar simulators. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Montana State University Bozeman, Montana

    Google Scholar 

  53. Newport Corporation (2020) [cited 2020 08.04.2020]. Simulation of solar radiation. Available from: https://www.newport.com/n/simulation-of-solar-irradiation

  54. Lueger O (1904) Bogenlampen. In: Lexikon der gesamten Technik. Deutsche Verlags-Anstalt, Stuttgart

    Google Scholar 

  55. OSRAM GmbH (2020) XBO for cinema projection product family sheet, available at https://www.osram.com/appsj/pdc/pdf.do?cid=GPS01_1028548&vid=PP_EUROPE_Europe_eCat&lid=EN&mpid=

  56. Spa I (2020) [12.04.2020] AS series H. V. Igniters for short arc xenon lamps. Available from: https://www.irem.it/en/illuminazione-professionale/xenon-lamps/as-series/

  57. GmbH, O. (2020) XBO 7000 W/HS XL OFR

    Google Scholar 

  58. Inc., U.A. (2020) DXL digital xenon lamps. Available from: https://www.ushio.com/product/dxl-and-uxl-for-nec-digital-cinema-projectors/

  59. Dibowski G, Esser K (2017) Hazards caused by UV rays of xenon light based high performance solar simulators. Saf Health Work 8(3):237–245

    Article  Google Scholar 

  60. Ushio USA Inc. (2020) Metal halide lamps

    Google Scholar 

  61. Ushio USA Inc. (2020) UMH metal halide

    Google Scholar 

  62. Miebach M (2016) Gas discharge light sources. University of Applied Sciences, Münster

    Google Scholar 

  63. Schubert F, Spinner D (2016) Solar simulator spectrum and measurement uncertainties. Energy Procedia 92:205–210

    Article  CAS  Google Scholar 

  64. Newport Corporation (2020) [14.04.2020] Mercury (Hg) arc lamps. Available from: https://www.newport.com/f/mercury-arc-lamps

  65. Newport Corporation, Oriel product training – spectral irradiance. Newport Corporation

    Google Scholar 

  66. Barnes NP, Remelius DK (1985) Argon arc lamps. Appl Opt 24(13):1947–1949

    Article  CAS  Google Scholar 

  67. Hooker JD (1975) Spectral lamp – noble gas – argon. Spec sheet for Philips LL Spectral Lamp. Available at http://www.lamptech.co.uk/SpecSheets/DSPPhilipsLLAr.htm

  68. MacIssac D, Kanner G, Anderson G (1999) Basic physics of the incandescent lamp (lightbulb). Phys Teach 37:520

    Article  Google Scholar 

  69. Ushio (2020) Spec sheet of SPH™ 575WHalogen lamp, sph-575w.pdf, Editor

    Google Scholar 

  70. KGaA, H.G.C. (2020) [11.04.2020] LED headlights. Available from: https://www.hella.com/techworld/us/Technical/Automotive-lighting/LED-headlights-833/

  71. Almanza R, Martínez I (2012) Solar mirrors. Solar Power, Radu D. Rugescu, IntechOpen. https://doi.org/10.5772/28524. Available from: https://www.intechopen.com/books/solar-power/solarmirrors

  72. Good P et al (2015) Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators. Data Brief 6:184

    Article  Google Scholar 

  73. Division, M.R.E. (2012) 3M™ solar mirror film 1100

    Google Scholar 

  74. Watson M et al (2001) Fresnel lens, NASA Technical reports, Document ID 20010048754

    Google Scholar 

  75. Inc., E.O. (2018) [27.04.2020] Advantages of Fresnel lenses. Available from: https://www.edmundoptics.de/knowledge-center/application-notes/optics/advantages-of-fresnel-lenses/

  76. Inc., F.T. (1996–2014) Fresnel lenses

    Google Scholar 

  77. Cotfas DT et al (2015) Ageing of photovoltaic cells under concentrated light. In: 2015 international Aegean conference on electrical machines & power electronics (ACEMP), 2015 international conference on optimization of electrical & electronic equipment (OPTIM) & 2015 international symposium on advanced electromechanical motion systems (ELECTROMOTION)

    Google Scholar 

  78. Inc., N. (2020) User’s guide LED solar simulator VeraSol

    Google Scholar 

  79. Newport Corporation (2020) VeraSol-2 LED class AAA solar simulator

    Google Scholar 

  80. Sapozhnikov SZ, Mityakov VY, Mityakov A. (2020) Heat Flux Measurement and Heat Flux Sensor. In: Heatmetry. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-40854-1_1

  81. Corporation, V. (2020) Thermogage. Available from: http://www.vatell.com/node/4

  82. Guillot E et al (2014) Comparison of 3 heat flux gauges and a water calorimeter for concentrated solar irradiance measurement. Energy Procedia 49:2090–2099

    Article  Google Scholar 

  83. Ballestrín J (2001) Direct heat-flux measurement system (MDF) for solar central receiver evaluation, Informes Técnicos Ciemat 961, Editorial CIEMAT

    Google Scholar 

  84. Röger M et al (2014) Techniques to measure solar flux density distribution on large-scale receivers. J Sol Energy Eng 136:031013-1

    Google Scholar 

  85. Thelen M et al (2016) Entwicklungslinien zur Flussdichtemesstechnik der DLR-Solarforschung. In: Sonnenkolloquium, DLR e.V. Cologne

    Google Scholar 

  86. Ballestrin J et al (2003) Systematic error in the measurement of very high solar irradiance. Sol Energy Mater Sol Cells 80(3):375–381

    Article  CAS  Google Scholar 

  87. Krueger KR, Davidson JH, Lipiński W (2011) Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research. ASME J Sol Energy Eng 133(1):011013. https://doi.org/10.1115/1.4003298

  88. Martínez L et al (2018) A 17.5 kW el high flux solar simulator with controllable flux-spot capabilities: design and validation study. Sol Energy 170:807

    Article  Google Scholar 

  89. Sarwar J et al (2014) Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol Energy 100:179–194

    Article  CAS  Google Scholar 

  90. Nakakura M et al (2015) Development of a receiver evaluation system using 30 kWth point concentration solar simulator. Energy Procedia 69:497–505

    Article  CAS  Google Scholar 

Further Reading

  • Alxneit I (2012) Error analysis of the radiative power determined from flux distributions measured with a camera in a Xe arc lamp-based solar simulator. J Sol Energy Eng 134(4)

    Google Scholar 

  • Atia D et al (2018) Spectral irradiance estimation of light emitting diode solar simulator based on genetic algorithm. Res J Appl Sci Eng Technol 15:227–235

    Article  CAS  Google Scholar 

  • Fend T et al (2003) Comparative assessment of solar concentrator materials. Sol Energy 74(2):149–155

    Article  CAS  Google Scholar 

  • Halliop B et al (2010) A dynamic model of a high-temperature arc lamp. IEEE Trans Ind Appl 46(6):2233–2242

    Article  CAS  Google Scholar 

  • He Y-L et al (2020) Perspective of concentrating solar power. Energy 198

    Google Scholar 

  • IEC – International Electrotechnical Commission (2007) International standard Norme Internationale, photovoltaic devices – part 9: solar simulator performance requirements. 60904-9 Edition 2.02007-10

    Google Scholar 

  • Ihara T et al (2016) Accelerated aging of treated aluminum for use as a cool colored material for facades. Energ Buildings 112:184–197

    Article  Google Scholar 

  • Imenes A et al (2006) Ray tracing and flux mapping as a design and research tool at the National Solar Energy Centre. ANZSES 2006. Canberra

    Google Scholar 

  • Jamali H (2019) Investigation and review of mirrors reflectance in parabolic trough solar collectors (PTSCs). Energy Rep 5:145–158

    Article  Google Scholar 

  • Li J et al (2014) Optical analysis of a hexagonal 42kWe high-flux solar simulator. Energy Procedia 57:590

    Article  CAS  Google Scholar 

  • Lovegrove K et al (2010) Solar mirror panels and their manufacture. International patent, WO 2010/115237 A1

    Google Scholar 

  • Michael DiGrazia G. J Recflectech mirror film: design flexibility and durability in reflecting solar applications. https://docplayer.net/30266503-Reflectech-mirror-film-design-flexibility-and-durability-in-reflecting-solar-applications.html

  • Offergeld M et al (2019) Flux density measurement for industrial-scale solar power towers using the reflection off the absorber. SolarPACES conference. Casablanca, 2126, pp 1–8

    Google Scholar 

  • Răboacă M et al (2019) Concentrating solar power technologies. Energies 12:1048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Laaber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laaber, D. (2021). Solar Simulators. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1055-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1055-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics