Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Biomass Provision and Use, Sustainability Aspects

  • Floor van der Hilst
  • Ric Hoefnagels
  • Martin Junginger
  • Marc Londo
  • Li Shen
  • Birka Wicke
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_1048-1


Biobased economy

The biobased economy encompasses all activities of the bioeconomy with a focus on non-food applications and includes bioenergy and traditional and modern biomaterials [1].

Biobased material

Biobased materials are materials that are completely or partially produced from biomass. It covers traditional material such as wood timber, pulp and paper, and textiles as well as novel biobased plastics, chemicals, natural fibers, pharmaceuticals, and cosmetics [2].


The bioeconomy encompasses the production of renewable biological resources and their conversion in agriculture, forestry, fisheries, food, bioenergy, pulp and paper, and part of chemicals and biotechnological sectors [3].


Bioenergy covers the use of biomass for energy purposes. Traditional bioenergy is biomass consumed in the residential and small industries in developing countries for inefficient heating and cooking. The majority of biomass (around 80%) is used for traditional purposes [

This is a preview of subscription content, log in to check access.


  1. 1.
    Langeveld JWA, Meesters KPH, Breure MS (2016) The biobased economy and bioeconomy in the Netherlands. WageningenGoogle Scholar
  2. 2.
    Weiss M, Haufe J, Carus M et al (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 16.  https://doi.org/10.1111/j.1530-9290.2012.00468.x
  3. 3.
    EC (2012) Innovating for sustainable growth: a bioeconomy for Europe. BrusselsGoogle Scholar
  4. 4.
    Creutzig F, Ravindranath NH, Berndes G et al (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7:916–944.  https://doi.org/10.1111/gcbb.12205 CrossRefGoogle Scholar
  5. 5.
    Chum H, Faaij A, Moreira J et al (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  6. 6.
    Ahlgren S, Di Lucia L (2014) Indirect land use changes of biofuel production – a review of modelling efforts and policy developments in the European Union. Biotechnol Biofuels 7:35.  https://doi.org/10.1186/1754-6834-7-35 CrossRefGoogle Scholar
  7. 7.
    Robledo-Abad C, Althaus H-J, Berndes G et al (2017) Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy 9:541–556.  https://doi.org/10.1111/gcbb.12338 CrossRefGoogle Scholar
  8. 8.
    International Organization for Standardization (2006) Environmental management – Life cycle assessment – Principles and framework, 2nd edn. ISO 14040:2006, 2006–06:GenevaGoogle Scholar
  9. 9.
    International Organization for Standardization (2006) Environmental management – Life cycle assessment – Requirements and guidelines. ISO 14044:2006, 2006–07:GenevaGoogle Scholar
  10. 10.
    BSI (2011) PUBLICLY AVAILABLE SPECIFICATION PAS 2050: 2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. 1–45Google Scholar
  11. 11.
    ISO (2013) ISO 14067:2013 Greenhouse gases – carbon footprint of products – requirements and guidelines for quantification and communication. Int Organ Stand 64.  https://doi.org/10.1016/j.jclepro.2015.04.109
  12. 12.
    World Business Council for Sustainable Development (WBCSD), World Resources Institute (WRI) (2004) A corporate accounting and reporting standard. Greenh Gas Protoc 1–116.  https://doi.org/10.1196/annals.1439.003
  13. 13.
    Ronzon T, Lusser M, Klinkenberg M, Landa L, Sanchez Lopez J, M’Barek R, Hadjamu G, AB, Camia A, Giuntoli J, Cristobal J, Parisi C, Ferrari E, Marelli L, Torres de Matos C, Gomez Barbero M ERC (2017) Bioeconomy report 2016Google Scholar
  14. 14.
    European Commission – Joint Research Centre – Institute for Environment and Sustainability (2010): International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European UnionGoogle Scholar
  15. 15.
    de Jong S, Antonissen K, Hoefnagels R et al (2017) Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol Biofuels 10:64.  https://doi.org/10.1186/s13068-017-0739-7 CrossRefGoogle Scholar
  16. 16.
    Moretti C, Moro A, Edwards R et al (2017) Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products. Appl Energy 206:372–381.  https://doi.org/10.1016/j.apenergy.2017.08.183 CrossRefGoogle Scholar
  17. 17.
    Kendall A, Yuan J (2013) Comparing life cycle assessments of different biofuel options. Curr Opin Chem Biol 17:439–443.  https://doi.org/10.1016/j.cbpa.2013.02.020 CrossRefGoogle Scholar
  18. 18.
    Cherubini F, Bird ND, Cowie A, et al (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53.  https://doi.org/10.1016/j.resconrec.2009.03.013
  19. 19.
    Smeets E, Bouwman LF, Stehfest E et al (2009) Contribution of N2O to the greenhouse gas balance of first-generation biofuels. Glob Chang Biol 15:1–23.  https://doi.org/10.1111/j.1365-2486.2008.01704.x CrossRefGoogle Scholar
  20. 20.
    Searle S, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenergy 65:3–12.  https://doi.org/10.1016/J.BIOMBIOE.2014.01.001 CrossRefGoogle Scholar
  21. 21.
    van der Hilst F, Lesschen JP, van Dam JMC et al (2012) Spatial variation of environmental impacts of regional biomass chains. Renew Sust Energ Rev 16:2053–2069.  https://doi.org/10.1016/j.rser.2012.01.027 CrossRefGoogle Scholar
  22. 22.
    REN21 (2017) Renewables 2017 global status report. ParisGoogle Scholar
  23. 23.
    Lee DS, Fahey DW, Forster PM et al (2009) Aviation and global climate change in the 21st century. Atmos Environ 43:3520–3537.  https://doi.org/10.1016/j.atmosenv.2009.04.024 CrossRefGoogle Scholar
  24. 24.
    Hoefnagels R, Smeets E, Faaij A (2010) Greenhouse gas footprints of different biofuel production systems. Renew Sust Energ Rev 14:1661–1694CrossRefGoogle Scholar
  25. 25.
    Daioglou V, Wicke B, Faaij APC, van Vuuren DP (2015) Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy 7:1321–1334.  https://doi.org/10.1111/gcbb.12228 CrossRefGoogle Scholar
  26. 26.
    Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat. Energy 2:2 16202Google Scholar
  27. 27.
    Ecofys (2016) World GHG emissions flow chartGoogle Scholar
  28. 28.
    Shen L, Worrell E, Patel M (2010) Present and future development in plastics from biomass. Biofuels Bioprod Biorefin 4:25–40.  https://doi.org/10.1002/bbb.189 CrossRefGoogle Scholar
  29. 29.
    European Bioplastics (2017) Bioplastics: facts and figures for 2016. Berlin. Available at: http://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf
  30. 30.
    Broeren MLM, Kuling L, Worrell E, Shen L (2017) Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Resour Conserv Recycl 127:246–255.  https://doi.org/10.1016/j.resconrec.2017.09.001
  31. 31.
    Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: a techno-economic analysis. Appl Biochem Biotechnol 136:361–388CrossRefGoogle Scholar
  32. 32.
    Vink ETH, Davies S, Kolstad JJ (2010) The eco-profile for current Ingeo\textsuperscript{\textregistered} polylactide production. Ind Biotechnol 6:212–224.  https://doi.org/10.1089/ind.2010.6.212 CrossRefGoogle Scholar
  33. 33.
    Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11:167–180.  https://doi.org/10.1089/ind.2015.0003 CrossRefGoogle Scholar
  34. 34.
    Groot W, Boren T (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int J Life Cycle Assess:1–15Google Scholar
  35. 35.
    Rostkowski KH, Criddle CS, Lepech MD (2012) Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: biogas-to-bioplastic (and back). Environ Sci Technol 46:9822–9829.  https://doi.org/10.1021/es204541w Google Scholar
  36. 36.
    Kim S, Dale B (2004) Life cycle assessment study of biopolymers (polyhydroxyalkanoates) – derived from no-tilled corn (11 pp). Int J Life Cycle Assess 10:200–210.  https://doi.org/10.1065/lca2004.08.171 CrossRefGoogle Scholar
  37. 37.
    Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130:57–66.  https://doi.org/10.1016/j.jbiotec.2007.02.012 CrossRefGoogle Scholar
  38. 38.
    Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194.  https://doi.org/10.1016/S0141-3910(02)00400-7 CrossRefGoogle Scholar
  39. 39.
    Chen GQ, Patel MK (2012) Plastics derive d from biological sources: present and future. Chem Rev 112:2082–2099.  https://doi.org/10.1021/cr200162d CrossRefGoogle Scholar
  40. 40.
    Tsiropoulos I, Faaij APC, Lundquist L et al (2015) Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J Clean Prod 90:114–127.  https://doi.org/10.1016/j.jclepro.2014.11.071 CrossRefGoogle Scholar
  41. 41.
    Ziem S, Chudziak C, Taylor R, et al (2013) Environmental assessment of Braskem’s biobased PE resin. E4tech, LCAworks, November 2013: LondonGoogle Scholar
  42. 42.
    PlasticsEurope (2016) High-density Polyethylene 1883 (HDPE), Low-density Polyethylene (LDPE), Linear Low-density Polyethylene (LLDPE) PlasticsEurope April 2014 December 2016 – update water balance. PlasticsEurope, BrusselsGoogle Scholar
  43. 43.
    Shen L, Worrell E, Patel MK (2012) Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels Bioprod Biorefin 6:625–639.  https://doi.org/10.1002/bbb.1368 CrossRefGoogle Scholar
  44. 44.
    PlasticsEurope (2011) Poly-ethyleneterephthalate (PET) – Bottle grade. BrusselsGoogle Scholar
  45. 45.
    PlasticsEurope (2014) Polypropylene (PP). BrusselsGoogle Scholar
  46. 46.
    DuPont (2008) DuPont website: Zemea (TM) Propanediol (DuPont Tate & Lyle BioProducts, LLC)Google Scholar
  47. 47.
    Sparovek G, Berndes G, Egeskog A et al (2007) Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels Bioprod Biorefin 1:270–282.  https://doi.org/10.1002/bbb.31 CrossRefGoogle Scholar
  48. 48.
    Kim S, Dale BE (2008) Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective. Environ Sci Technol 42:7690–7695.  https://doi.org/10.1021/es8004199 CrossRefGoogle Scholar
  49. 49.
    Hermann BG, Blok K, Patel MK (2007) Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change. Environ Sci Technol 41:7915–7921CrossRefGoogle Scholar
  50. 50.
    Durlinger B, Koukouna E, Broekema R, et al (2017) Agri-footprint 3.0 Part I: methodology and basic principles. Agri-Footprint, May 2017: Gouda, the Netherlands. Available at: http://www.agri-footprint.com/wp-content/uploads/2017/07/Agri-Footprint-3.0-Part-1-Methodology-and-basic-principles-29-05-2017.pdf
  51. 51.
    Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) (2006) Intergovernmental Penal on Climate Change (IPCC). 2006 IPCC guidelines for national greenhouse gas inventories, vol 4 Agriculture, Forestry and Other Land Use. Prepared by the National Greenhouse Gas Inventories Programme, IGES, Japan. Availale at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
  52. 52.
    Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319((80)):1235–1238CrossRefGoogle Scholar
  53. 53.
    Gibbs HK, Johnston M, Foley JA, et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3.  https://doi.org/10.1088/1748-9326/3/3/034001
  54. 54.
    Searchinger TD, Estes L, Thornton PK et al (2015) High carbon and biodiversity costs from converting Africa/’s wet savannahs to cropland. Nat Clim Chang 5:481–486CrossRefGoogle Scholar
  55. 55.
    Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360.  https://doi.org/10.1046/j.1354-1013.2002.00486.x CrossRefGoogle Scholar
  56. 56.
    Wicke B, Dornburg V, Junginger M, Faaij A (2008) Different palm oil production systems for energy purposes and their greenhouse gas implications. Biomass Bioenergy 32:1322–1337.  https://doi.org/10.1016/j.biombioe.2008.04.001 CrossRefGoogle Scholar
  57. 57.
    Renewable Fuels Agency (2008) Carbon and sustainability reporting with the renewable transport fuels obligation – technical guidance (Part 2). LondonGoogle Scholar
  58. 58.
    FAO (2017) Soil organic carbon mapping GSOC map Cookbook Manual. RomeGoogle Scholar
  59. 59.
    Liu YY, van Dijk AIJM, de Jeu RAM et al (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Chang 5:470–474CrossRefGoogle Scholar
  60. 60.
    Wicke B, Verweij P, van Meijl H et al (2012) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100CrossRefGoogle Scholar
  61. 61.
    Tyner WE, Taheripour F, Zhuang Q, Birur D, Baldos U. (2010) Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis. Dep. Agric. Econ. Purdue Univ. 2010. p. 1–90. Available at: https://greet.es.anl.gov/files/8vdox40k
  62. 62.
    Laborde D (2011) Assessing the land use change consequences of European biofuels policies. International Food Policy Research Institute, Washington, DCGoogle Scholar
  63. 63.
    Laborde D, Padella M, Edwards R, Marelli L. (2014) Progress in estimates of ILUC with MIRAGE model Publications Office of the European Union, Luxembourg 2014. Available at: http://publications.jrc.ec.europa.eu/repository/handle/JRC83815
  64. 64.
    Valin H, Peters D, van den Berg M, et al (2015) The land use change impact of biofuels consumed in the EU: quantification of area and greenhouse gas impacts. Utrecht, the NetherlandsGoogle Scholar
  65. 65.
    Bauen A, Chudziak C, Vad K, Watson P (2010) A causal descriptive approach to modelling the GHG emissions associated with the indirect land use impacts of biofuels. LondonGoogle Scholar
  66. 66.
    Wicke B, van der Hilst F, Daioglou V et al (2015) Model collaboration for the improved assessment of biomass supply, demand, and impacts. GCB Bioenergy 7:422–437.  https://doi.org/10.1111/gcbb.12176 CrossRefGoogle Scholar
  67. 67.
    Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240.  https://doi.org/10.1126/science.1151861 CrossRefGoogle Scholar
  68. 68.
    Prins, A. G., Overmars, K., & Ros, J. (2014) Struggling to deal with uncertainties. What is known about indirect land-use change. PBL report, PBL publication number: 1370. Bilthoven, Netherlands Environmental Assessment Agency (PBL). Available at: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2014-struggling-to-deal-with-uncertainties-what-is-known-about-indirect-land-use-change.pdf
  69. 69.
    Malins, C., Searle, S., & Baral, A. (2014) A guide for the perplexed to the indirect effects of biofuels production. International Council on Clean Transportation, Washington, DCGoogle Scholar
  70. 70.
    Plevin RJ, Beckman J, Golub AA et al (2015) Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ Sci Technol 49:2656–2664.  https://doi.org/10.1021/es505481d CrossRefGoogle Scholar
  71. 71.
    Malins, C. (2011) IFPRI-MIRAGE 2011 modelling of indirect land use change. International Council on Clean Transportation (ICCT), BrusselsGoogle Scholar
  72. 72.
    EPA (2010) Renewable fuel standard program (RFS2) regulatory impact analysis. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  73. 73.
    CARB (2010) Low carbon fuel standard. California Air Resources Board, SacramentoGoogle Scholar
  74. 74.
    Hertel TW, Golub AA, Jones AD et al (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60:223–231.  https://doi.org/10.1525/bio.2010.60.3.8 CrossRefGoogle Scholar
  75. 75.
    Al-Riffai P, Dimaranan B, Laborde D (2010) Global trade and environmental impact study of the EU biofuels mandate. International Food Policy Research Institute, Washington, DCGoogle Scholar
  76. 76.
    Laborde D, Valin H (2012) Modeling land-use changes in a global CGE: assessing the EU biofuel mandates with the Mirage-BioF model. Clim Chang Econ 3:1250017CrossRefGoogle Scholar
  77. 77.
    Dunn JB, Mueller S, Kwon H-Y, Wang MQ (2013) Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnol Biofuels 6:51.  https://doi.org/10.1186/1754-6834-6-51 CrossRefGoogle Scholar
  78. 78.
    California Air Resources Board (CARB) (2014) Low Carbon Fuel Standard Re-Adoption Indirect Land Use Change (iLUC) Analysis, Sacramento, CA. Available at: https://www.arb.ca.gov/fuels/lcfs/lcfs_meetings/112014presentation.pdf
  79. 79.
    Plevin RJ, O’Hare M, Jones AD et al (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021.  https://doi.org/10.1021/es101946t CrossRefGoogle Scholar
  80. 80.
    Verstegen JA, van der Hilst F, Woltjer G, Karssenberg D, de Jong SM, Faaij APC. What can and can’t we say about indirect land-use change in Brazil using an integrated economic – land-use change model? GCB Bioenergy 8:561–78.  https://doi.org/10.1111/gcbb.12270
  81. 81.
    Taheripour F, Tyner WE (2013) Induced land use emissions due to first and second generation biofuels and uncertainty in land use emission factors. Econ Res Int 2013:1–12.  https://doi.org/10.1155/2013/315787 CrossRefGoogle Scholar
  82. 82.
    Gerssen-Gondelach SJ, Wicke B, Borzęcka-Walker M et al (2016) Bioethanol potential from miscanthus with low ILUC risk in the province of Lublin, Poland. GCB Bioenergy 8:909–924.  https://doi.org/10.1111/gcbb.12306 CrossRefGoogle Scholar
  83. 83.
    Brinkman MLJ, Wicke B, Faaij APC (2017) Low-ILUC-risk ethanol from Hungarian maize. Biomass Bioenergy 99:57–68.  https://doi.org/10.1016/j.biombioe.2017.02.006 CrossRefGoogle Scholar
  84. 84.
    Van der Laan C, Wicke B, Verweij PA, Faaij APC (2017) Mitigation of unwanted direct and indirect land-use change – an integrated approach illustrated for palm oil, pulpwood, rubber and rice production in North and East Kalimantan, Indonesia. GCB Bioenergy 9:429–444.  https://doi.org/10.1111/gcbb.12353 CrossRefGoogle Scholar
  85. 85.
    Gerssen-Gondelach SJ, Wicke B, Faaij APC (2016) GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenergy:1–18.  https://doi.org/10.1111/gcbb.12394
  86. 86.
    EC (2016) COM(2016) 767 final/2 Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of energy from renewable sources (recast). BrusselsGoogle Scholar
  87. 87.
    Wicke B, Brinkman MLJ, Gerssen-Gondelach S, et al (2015) ILUC prevention strategies for sustainable biofuels: synthesis report from the ILUC Prevention project. UtrechtGoogle Scholar
  88. 88.
    Ecoinvent (2013) Ecoinvent Database 3.0. Ecoinvent Centre, Zurich. http://www.ecoinvent.org/
  89. 89.
    International Organization for Standardization (ISO) (2015) ISO 13065:2015 Sustainability criteria for bioenergy. 2015–09: Geneva. Available at: https://www.iso.org/standard/52528.html
  90. 90.
    Marland G, Schlamadinger B (1995) Biomass fuels and forest-management strategies: how do we calculate the greenhouse-gas emissions benefits? Energy 20:1131–1140.  https://doi.org/10.1016/0360-5442(95)00061-K CrossRefGoogle Scholar
  91. 91.
    Schlamadinger B, Marland G (1996) The role of forest and bioenergy strategies in the global carbon cycle. In: Biomass and bioenergy. pp 275–300Google Scholar
  92. 92.
    Walker T, Cardellichio P, Colnes A, et al (2010) Massachusetts biomass sustainability and carbon policy study: report to the Commonwealth of Massachusetts Department of Energy Resources. Manomet Cent Conserv Sci 182. NCI-2010-03Google Scholar
  93. 93.
    Zanchi G, Pena N, Bird N (2010) The upfront carbon debt of bioenergy. Joanneaum Res Graz, May 56Google Scholar
  94. 94.
    Birdlife (2010) Bioenergy – a carbon accounting bomb. BirdLife International, European Environmental Bureau – EEB, Transport Environment – T&E. Cambridge (UK), Brussels (Belgium). Available at: https://www.transportenvironment.org/sites/te/files/media/Bioenergy_a_carbon_accounting_time_bomb_FINAL.pdf
  95. 95.
    RSPB (2012) Dirtier than coal? Why government plans to subsidise burning trees are bad news for the planet. Royal Society for the Protection of Birds (RSPB), Sandy (UK). Available at: http://ww2.rspb.org.uk/Images/biomass_report_tcm9-326672.pdf
  96. 96.
    Agostini, A., Giuntoli, J., & Boulamanti, A. (2013) Carbon accounting of forest bioenergy: conclusions and recommendations from a critical literature review. Publications Office of the European Union, Luxembourg. Available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC70663/eur25354en_online.pdf
  97. 97.
    Lamers P, Junginger M (2013) The “debt” is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod Biorefin 7:373–385.  https://doi.org/10.1002/bbb.1407 CrossRefGoogle Scholar
  98. 98.
    Miner RA, Abt RC, Bowyer JL et al (2014) Forest carbon accounting considerations in US bioenergy policy. J For 112:591–606Google Scholar
  99. 99.
    Ter-Mikaelian MT, Colombo SJ, Chen J (2015) The burning question: does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. J For 113:57–68.  https://doi.org/10.5849/jof.14-016 Google Scholar
  100. 100.
    IEA Task 38 (2014) Workshop statement Forests, bioenergy and climate change mitigation Outcome of the workshop on Forests, bioenergy and climate change mitigation, held May 19–20, 2014 in Copenhagen. Available at: http://www.ieabioenergy-task38.org/workshops/copenhagen2014/CPH_Bioenergy_Workshop_Statement_2014.pdf
  101. 101.
    Bentsen NS (2017) Carbon debt and payback time – lost in the forest? Renew Sust Energ Rev 73:1211–1217CrossRefGoogle Scholar
  102. 102.
    Buchholz T, Hurteau MD, Gunn J, Saah D (2015) A global meta-analysis of forest bioenergy greenhouse gas emission accounting studies. GCB Bioenergy. n/a-n/a.  https://doi.org/10.1111/gcbb.12245
  103. 103.
    Mitchell SR, Harmon ME, O’Connell KEB (2012) Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy 4:818–827.  https://doi.org/10.1111/j.1757-1707.2012.01173.x CrossRefGoogle Scholar
  104. 104.
    Repo A, Känkänen R, Tuovinen J-P et al (2012) Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy 4:202–212.  https://doi.org/10.1111/j.1757-1707.2011.01124.x CrossRefGoogle Scholar
  105. 105.
    Cherubini F, Peters GP, Berntsen T et al (2011) CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3:413–426.  https://doi.org/10.1111/j.1757-1707.2011.01102.x CrossRefGoogle Scholar
  106. 106.
    Cherubini F, Strømman AH, Hertwich E (2011) Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol Model 223:59–66.  https://doi.org/10.1016/j.ecolmodel.2011.06.021 CrossRefGoogle Scholar
  107. 107.
    Pingoud K, Ekholm T, Savolainen I (2012) Global warming potential factors and warming payback time as climate indicators of forest biomass use. Mitig Adapt Strateg Glob Chang 17:369–386.  https://doi.org/10.1007/s11027-011-9331-9 CrossRefGoogle Scholar
  108. 108.
    Matthews, R., Sokka, L., Soimakallio, S., Mortimer, N., Rix, J., Schelhaas, M., … & Randle, T. (2014) Review of literature on biogenic carbon and life cycle assessment of forest bioenergy. Final Task 1 report (No. ENER/C1/427). The Research Agency of the Forestry Commission. Available at: https://ec.europa.eu/energy/sites/ener/files/2014_biomass_forest_research_report_.pdf
  109. 109.
    Abt KL, Abt RC, Galik CS, Skog KE (2014) Effect of policies on pellet production and forests in the U.S. South a technical document supporting the forest service update of the 2010 RPA assessment. AshevilleGoogle Scholar
  110. 110.
    Goetzle A (2015) Developments in the global trade of wood pellets. Office of Industries U.S. International Trade Commission, Washington, DC. Available at: https://www.usitc.gov/publications/332/wood_pellets_id-039_final.pdf
  111. 111.
    NRDC (2013) Enviva’s wood pellet mill in Ahoskie, North Carolina Threatens Endangered Ecosystems and Wildlife. Fact sheet. Natural Resources Defense Council, August 2013. Available at: https://www.nrdc.org/sites/default/files/enviva-wood-pellets-FS.pdf
  112. 112.
    Colnes A, Doshi K, Emick H, et al (2012) Biomass supply and carbon accounting for Southeastern Forests. Biomass Energy Resource Center, Forest Guild, Spatial Informatics Group. Available at: https://www.southernenvironment.org/uploads/publications/biomass-carbon-study-FINAL.pdf
  113. 113.
    Jonker JGG, Junginger M, Faaij A (2014) Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. GCB Bioenergy 6:371–389.  https://doi.org/10.1111/gcbb.12056 CrossRefGoogle Scholar
  114. 114.
    Hanssen SV, Duden AS, Junginger M et al (2017) Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks. GCB Bioenergy 9:1406–1422.  https://doi.org/10.1111/gcbb.12426 CrossRefGoogle Scholar
  115. 115.
    Stephenson AL, MacKay DJ (2014) Life cycle impacts of Biomass Electricity in 2020: scenarios for assessing the greenhouse gas impacts and energy input requirements of using North American woody biomass for electricity generation in the UK. Department of Energy and Climate Change (DECC), LondonGoogle Scholar
  116. 116.
    Howes P (2016) Use of North American woody biomass in UK electricity generation: Assessment of high carbon biomass fuel sourcing scenarios. Ricardo Energy & Environment.Google Scholar
  117. 117.
    Jonker G.G., Hilst F van der, Markewitz D, et al (2017) Carbon balances and economic performance of pine plantations for bioenergy production in the Southeastern United States. In: Quantification and comparison of the economic and GHG performance of biomass supply chains, PhD Thesis. Utrecht University, Utrecht, the NetherlandsGoogle Scholar
  118. 118.
    Kittler B (2015) US pellet exports: perspectives on environmental risks and risk mitigation methodologies. In: Presentation at the BioGrace II workshop. BrusselsGoogle Scholar
  119. 119.
    Franco CR (2017) Sustainable forest management in the United States. Presentation by. In: Partnership for biobased economy, Port of Rotterdam. Rotterdam, the NetherlandsGoogle Scholar
  120. 120.
    Wear DN, Greis JG (2013) The southern forest futures project: technical report. AshevilleGoogle Scholar
  121. 121.
    Galik CS, Abt RC (2016) Sustainability guidelines and forest market response: an assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy 8:658–669.  https://doi.org/10.1111/gcbb.12273 CrossRefGoogle Scholar
  122. 122.
    Evans JM, Fletcher Jr RJ, Alava-lapati JRR, et al (2013) Forestry bioenergy in the Southeast United States: implications for wildlife habitat and biodiversity. MerrifieldGoogle Scholar
  123. 123.
    Duden AS, Verweij PA, Junginger HM et al (2017) Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States. Biofuels Bioprod Biorefin.  https://doi.org/10.1002/bbb.1803
  124. 124.
    US EPA (2017) Renewable Fuel Standard (RFS).Website https://www.epa.gov/renewable-fuel-standard-program/overview-renewable-fuel-standard; consulted January 3, 2018
  125. 125.
    Mondou M, Skogstad G (2012) The regulation of biofuels in the United States, European Union and Canada. University of Toronto, TorontoGoogle Scholar
  126. 126.
    Moorhouse J, Wolinetz M (2016) Biofuels in Canada: Tracking progress in tackling greenhouse gas emissions from transportation fuels. Clean Energy Canada, SFU and Navius Research, S.l.Google Scholar
  127. 127.
    Mai-Moulin T, van Dam J, Armstrong S, Junginger M (accepted)) Towards a harmonisation of national sustainability requirements and criteria for solid biomass. Accepted for publication in Biofuels Bioproducts & BiorefiningGoogle Scholar
  128. 128.
    Pelkmans L, Brown G, Panoutsou C (2014) National policy landscapes: United Kingdom – Deliverable 3.1 of the Biomass Policies project. VITO and Imperial College London, S.l.Google Scholar
  129. 129.
    Anonymous (2015) Convenant duurzaamheid biomassa (Covenant biomass sustainability) version 18.03.2015. S.l.. Available at https://www.rijksoverheid.nl/documenten/convenanten/2015/03/18/convenant-duurzaamheid-biomassa
  130. 130.
    Richter K (2016) A comparison of national sustainability schemes for solid biomass in the EU. Marsh (UK), Brussels (Belgium)Google Scholar
  131. 131.
    Beckman K New German legislation will shake up EU biofuels market – but how? In: Energy PostGoogle Scholar
  132. 132.
    Finkbeiner M (2014) Indirect land use change – help beyond the hype? Biomass Bioenergy 62:218–221.  https://doi.org/10.1016/j.biombioe.2014.01.024 CrossRefGoogle Scholar
  133. 133.
    Muñoz I, Schmidt J, Brandão M, Weidema B (2014) Avoiding the streetlight effect: Rebuttal to “Indirect land use change (iLUC) within life cycle assessment (LCA) – scientific robustness and consistency with international standards” by prof. Dr. Matthias Finkbeiner. Aalborg, DenmarkGoogle Scholar
  134. 134.
    Witcover J, Yeh S, Sperling D (2013) Policy options to address global land use change from biofuels. Energy Policy 56:63–74.  https://doi.org/10.1016/j.enpol.2012.08.030 CrossRefGoogle Scholar
  135. 135.
    Andrade de Sá S, Palmer C, Di Falco S (2013) Dynamics of indirect land-use change: empirical evidence from Brazil. J Environ Econ Manage 65:377–393.  https://doi.org/10.1016/j.jeem.2013.01.001 CrossRefGoogle Scholar
  136. 136.
    EP (2015) Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewabl. BrusselsGoogle Scholar
  137. 137.
    Barona E, Ramankutty N, Hyman G, Coomes OT (2010) The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ Res Lett 5:24002.  https://doi.org/10.1088/1748-9326/5/2/024002 CrossRefGoogle Scholar
  138. 138.
    van de Staaij J, Peters D, Dehue B, et al (2012) Low Indirect Impact Biofuel (LIIB) Methodology – version 0. Utrecht, the NetherlandsGoogle Scholar
  139. 139.
    Anonymous (2016) SDE+ sustainability requirements for solid biomass. Netherlands Enterprise Agency, S.l.. Available at https://english.rvo.nl/sites/default/files/2017/07/SDE%20Sustainability%20requirements%20for%20solid%20biomass.pdf

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Floor van der Hilst
    • 1
  • Ric Hoefnagels
    • 1
  • Martin Junginger
    • 1
  • Marc Londo
    • 1
    • 2
  • Li Shen
    • 1
  • Birka Wicke
    • 1
  1. 1.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
  2. 2.NVDE the Netherlands Association for Renewable EnergyUtrechtThe Netherlands

Section editors and affiliations

  • Martin Kaltschmitt
    • 1
  1. 1.Institute of Environmental Technology and Energy Economics (IUE)Hamburg University of Technology (TUHH)HamburgGermany