Skip to main content

Osmotic Power Generation

  • Living reference work entry
  • First Online:
  • 207 Accesses

Definition of the Subject

Production of energy for daily use involves conversion of energy from one form to another. Successful power generation techniques are those that make use of inexpensive energy sources and that utilize efficient conversions. Chemical potential is a unique source of energy that under certain conditions can be converted to useful energy. One example is the conversion of salinity gradient to pressure and from pressure to kinetic energy in a turbo-generator [1, 2].

Conversion of chemical energy to kinetic energy and electric power can be achieved across semipermeable membranes using the pressure-retarded osmosis process powered by salinity gradient between two streams, a highly saline brine and fresh water. The idea is that in every place that rivers meet oceans or saline lakes (e.g., Dead Sea, Great Salt Lake, etc.) the salinity difference between the streams could be converted to useful energy or electricity [3, 4].

Introduction

Osmotic power, or...

This is a preview of subscription content, log in via an institution.

References

  1. Loeb S, Honda T, Reali M (1990) Comparative mechanical efficiency of several plant configurations using a pressure-retarded osmosis energy converter. J Membr Sci 51:323–335

    Article  CAS  Google Scholar 

  2. Loeb S (1998) Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera? Desalination 120:247–262

    Article  CAS  Google Scholar 

  3. Loeb S (1976) Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J Membr Sci 1:49

    Article  Google Scholar 

  4. Loeb S, Hassen Fv, Shahaf D (1976) Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs. J Membr Sci 1:249–269

    Article  CAS  Google Scholar 

  5. Loeb S (1974) Osmotic power plants. Science 189:350

    Google Scholar 

  6. Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281:70–87

    Article  CAS  Google Scholar 

  7. Patel S (2014) Statkraft shelves osmotic power project. http://www.powermag.com/statkraft-shelves-osmotic-power-project/

  8. Norman RS (1974) Water salination: a source of energy. Science 186:350–352

    Article  CAS  Google Scholar 

  9. Aaberg RJ (2003) Osmotic power. A new and powerful renewable energy source? Refocus 4:48–50

    Article  Google Scholar 

  10. Manth T, Gabor M, Oklejas E (2003) Minimizing RO energy consumption under variable conditions of operation. Desalination 157:9–21

    Article  CAS  Google Scholar 

  11. Peñate B, García-Rodríguez L (2011) Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment. Energy 36:613–626

    Article  Google Scholar 

  12. Stover RL (2007) Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–175

    Article  CAS  Google Scholar 

  13. Mulder M (2001) Basic principles of membrane technology, 2nd edn. Kluwer, Dordrecht. ISBN 9780792342472

    Google Scholar 

  14. Hancock NT, Cath TY (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ Sci Technol 43:6769–6775

    Article  CAS  Google Scholar 

  15. Hancock NT, Phillip WA, Elimelech M, Cath TY (2011) Bidirectional permeation of electrolytes in osmotically driven membrane processes. Environ Sci Technol 45:10642–10651

    Article  CAS  Google Scholar 

  16. Achilli A, Cath TY, Childress AE (2009) Power generation with pressure retarded osmosis: an experimental and theoretical investigation. J Membr Sci 343:42–52

    Article  CAS  Google Scholar 

  17. Mehta GD, Loeb S (1978) Internal polarization in the porous substructure of a semi-permeable membrane under pressure-retarded osmosis. J Membr Sci 4:261

    Article  CAS  Google Scholar 

  18. Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8:141–171

    Article  CAS  Google Scholar 

  19. Achilli A, Childress AE (2010) Pressure retarded osmosis: from the vision of Sidney Loeb to the first prototype installation – review. Desalination 261:205–211

    Article  CAS  Google Scholar 

  20. Li X, He T, Dou P, Zhao S (2017) Forward osmosis and forward osmosis membranes. A book chapter in: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Amsterdam, The Netherlands. ISBN 978-0-12-409547-2

    Google Scholar 

  21. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Technol 45:4360–4369

    Article  CAS  Google Scholar 

  22. Straub AP, Deshmukh A, Elimelech M (2016) Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energ Environ Sci 9:31–48

    Article  CAS  Google Scholar 

  23. Hickenbottom KL, Vanneste J, Elimelech M, Cath TY (2016) Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis. Desalination 389:108–118

    Article  CAS  Google Scholar 

  24. Arena JT, McCloskey B, Freeman BD, McCutcheon JR (2011) Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis. J Membr Sci 375:55–62

    Article  CAS  Google Scholar 

  25. McCutcheon JR, Elimelech M (2006) Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 284:237–247

    Article  CAS  Google Scholar 

  26. Straub AP, Osuji CO, Cath TY, Elimelech M (2015) Selectivity and mass transfer limitations in pressure-retarded osmosis at high concentrations and increased operating pressures. Environ Sci Technol 49:12551–12559

    Article  CAS  Google Scholar 

  27. Hickenbottom KL, Vanneste J, Cath TY (2016) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175

    Article  CAS  Google Scholar 

  28. Reali M (1980) Closed cycle osmotic power plants for electric power production. Energy 5:325–329

    Article  CAS  Google Scholar 

  29. McGinnis RL, McCutcheon JR, Elimelech M (2007) A novel ammonia–carbon dioxide osmotic heat engine for power generation. J Membr Sci 305:13–19

    Article  CAS  Google Scholar 

  30. McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174:1–11

    Article  CAS  Google Scholar 

  31. Hickenbottom KL, Vanneste J, Miller-Robbie L, Deshmukh A, Elimelech M, Heeley MB, Cath TY (2017) Techno-economic assessment of a closed-loop osmotic heat engine. J Membr Sci. doi:10.1016/j.memsci.2017.04.034. (in press)

  32. BCS Inc. (2008) Waste heat recovery: technology and opportunities in U.S. industry. U.S. Department of Energy, Industrial Technologies Program, Washington, DC. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf

  33. Post JW, Hamelers HVM, Buisman CJN (2008) Energy recovery from controlled mixing salt and fresh water with a reverse Electrodialysis system. Environ Sci Technol 42:5785–5790

    Article  CAS  Google Scholar 

  34. Hickenbottom KL, Vanneste J, Cath TY (2015) Assessment of alternative draw solutions for optimized performance of a closed-loop osmotic heat engine. J Membr Sci 504:162–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzahi Y. Cath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Cath, T.Y. (2017). Osmotic Power Generation. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1029-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1029-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics