Skip to main content

Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

This chapter presents an overview of the Mumford and Shah model for image segmentation. It discusses its various formulations, some of its properties, the mathematical framework, and several approximations. It also presents numerical algorithms and segmentation results using the Ambrosio-Tortorelli phase-field approximations on one hand and level set formulations on the other hand. Several applications of the Mumford-Shah problem to image restoration are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.A.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Alicandro, R., Braides, A., Shah, J.: Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximation. Interfaces Free Bound 1, 17–37 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L.: A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3(B), 857–881 (1989)

    MATH  MathSciNet  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  5. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B7(6), 105–123 (1992)

    MathSciNet  Google Scholar 

  7. Aubert, G., Blanc-Féraud, L., March, R.: An approximation of the Mumford-Shah energy by a family of discrete edge-preserving functionals. Nonlinear Anal. 64(9), 1908–1930 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2006)

    MATH  Google Scholar 

  9. Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted by impulsive noise. IEEE Trans. Image Process. 16(4), 1101–1111 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bar, L., Sochen, N., Kiryati, N.: Variational pairing of image segmentation and blind restoration. In: Proceedings of 8th European Conference on Computer Vision, Prague. Volume 3022 of LNCS, pp. 166–177 (2004)

    Google Scholar 

  11. Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of salt-and-pepper noise. In: Proceedings of 5th International Conference on Scale Space and PDE Methods in Computer Vision, Hofgeismar. Volume 3459 of LNCS, pp. 107–118 (2005)

    Google Scholar 

  12. Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70, 279–298 (2006)

    Article  Google Scholar 

  13. Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via Mumford-Shah regularization. IEEE Trans. Image Process. 15(2), 483–493 (2006)

    Article  Google Scholar 

  14. Bar, L., Sochen, N., Kiryati, N.: Convergence of an iterative method for variational deconvolution and impulsive noise removal. SIAM J. Multiscale Model Simul. 6, 983–994 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bar, L., Sochen, N., Kiryati, N.: Restoration of images with piecewise space-variant blur. In: Proceedings of 1st International Conference on Scale Space and Variational Methods in Computer Vision, Ischia, pp. 533–544 (2007)

    Google Scholar 

  16. Blake, A., Zisserman, A.: Visual Reconstruction. MIT, Cambridge (1987)

    Google Scholar 

  17. Bourdin, B.: Image segmentation with a finite element method. M2AN Math. Model. Numer. Anal. 33(2), 229–244 (1999)

    Google Scholar 

  18. Bourdin, B., Chambolle, A.: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85(4), 609–646 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Braides, A.: Approximation of Free-Discontinuity Problems. Volume 1694 of Lecture Notes in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  20. Braides, A., Dal Maso, G.: Nonlocal approximation of the Mumford-Shah functional. Calc Var 5, 293–322 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bregman, L.M.: The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  22. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM MMS 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chambolle, A.: Un théorème de γ-convergence pour la segmentation des signaux. C R Acad Sci Paris Sér. I Math 314(3), 191–196 (1992)

    MATH  MathSciNet  Google Scholar 

  24. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional, and the discrete approximation. SIAM J. Appl. Math. 55, 827–863 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chambolle, A.: Finite-differences discretizations of the Mumford-Shah functional. M2AN Math. Model. Numer. Anal. 33(2), 261–288 (1999)

    Google Scholar 

  26. Chambolle, A.: Inverse problems in image processing and image segmentation: some mathematical and numerical aspects. In: Chidume, C.E. (ed.) Mathematical Problems in Image Processing. ICTP Lecture Notes Series, vol. 2. ICTP, Trieste (2000). http://publications.ictp.it/lns/vol2.html

    Google Scholar 

  27. Chambolle, A., Dal Maso, G.: Discrete approximation of the Mumford-Shah functional in dimension two. M2AN Math. Model. Numer. Anal. 33(4), 651–672 (1999)

    Google Scholar 

  28. Chan, T.F., Shen, J.: Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  29. Chan, T., Vese, L.: An active contour model without edges. Lect. Notes Comput. Sci. 1682, 141–151 (1999)

    Google Scholar 

  30. Chan, T., Vese, L.: An efficient variational multiphase motion for the Mumford-Shah segmentation model. In: 34th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, vol. 1, pp. 490–494 (2000)

    Google Scholar 

  31. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  32. Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford-Shah functional in image processing. In: IEEE/Computer Society Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, pp. 161–168 (2001)

    Google Scholar 

  33. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  34. Chung, G., Vese, L.A.: Energy minimization based segmentation and denoising using a multilayer level set approach. Lect. Notes Comput. Sci. 3757, 439–455 (2005)

    Google Scholar 

  35. Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Cohen, L.D.: Avoiding local minima for deformable curves in image analysis. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 77–84. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  37. Cohen, L., Bardinet, E., Ayache, N.: Surface reconstruction using active contour models. In: SPIE ‘93 Conference on Geometric Methods in Computer Vision, San Diego, July 1993

    Google Scholar 

  38. David, G.: Singular Sets of Minimizers for the Mumford-Shah Functional. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  39. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  40. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC, Boca Raton (1992)

    MATH  Google Scholar 

  41. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE TPAMI 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  42. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. SIAM MMS 6(2), 595–630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  45. Jung, M., Chung, G., Sundaramoorthi, G., Vese, L.A., Yuille, A.L.: Sobolev gradients and joint variational image segmentation, denoising and deblurring. In: IS&T/SPIE on Electronic Imaging. Volume 7246 of Computational Imaging VII, San Jose, pp. 72460I-1–72460I-13 (2009)

    Google Scholar 

  46. Jung, M., Vese, L.A.: Nonlocal variational image deblurring models in the presence of gaussian or impulse noise. In: International Conference on Scale Space and Variational Methods in Computer Vision (SSVM’ 09), Voss. Volume 5567 of LNCS, pp. 402–413 (2009)

    Google Scholar 

  47. Kim, J., Tsai, A., Cetin, M., Willsky, A.S.: A curve evolution-based variational approach to simultaneous image restoration and segmentation. In: Proceedings of IEEE International Conference on Image Processing, Rochester, vol. 1, pp. 109–112 (2002)

    Google Scholar 

  48. Koepfler, G., Lopez, C., Morel, J.M.: A multiscale algorithm for image segmentation by variational methods. SIAM J. Numer. Anal. 31(1), 282–299 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kundur, D., Hatzinakos, D.: Blind image deconvolution. Signal Process. Mag. 13, 43–64 (1996)

    Article  Google Scholar 

  50. Kundur, D., Hatzinakos, D.: Blind image deconvolution revisited. Signal Process. Mag. 13, 61–63 (1996)

    Article  Google Scholar 

  51. Larsen, C.J.: A new proof of regularity for two-shaded image segmentations. Manuscr. Math. 96, 247–262 (1998)

    Article  MATH  Google Scholar 

  52. Leonardi, G.P., Tamanini, I.: On minimizing partitions with infinitely many components. Ann. Univ. Ferrara Sez. VII Sc. Mat. XLIV, 41–57 (1998)

    Google Scholar 

  53. Li, C., Kao, C.-Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR’07, Minneapolis (2007)

    Google Scholar 

  54. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  55. Dal Maso, G., Morel, J.M., Solimini, S.: Variational approach in image processing – existence and approximation properties. C. R. Acad. Sci. Paris Sér. I Math. 308(19), 549–554 (1989)

    MATH  MathSciNet  Google Scholar 

  56. Dal Maso, G., Morel, J.M., Solimini, S.: A variational method in image segmentation – existence and approximation properties. Acta Math. 168(1–2), 89–151 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. Massari, U., Tamanini, I.: On the finiteness of optimal partitions. Ann. Univ. Ferrara Sez VII Sc. Mat. XXXIX, 167–185 (1993)

    Google Scholar 

  58. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98, 123–142 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  59. Modica, L., Mortola, S.: Un esempio di γ-convergenza. Boll. Un. Mat. Ital. B5(14), 285–299 (1977)

    MathSciNet  Google Scholar 

  60. Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  61. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 22–26 (1985)

    Google Scholar 

  62. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Ullman, S., Richards, W. (eds.) Image Understanding, pp. 19–43. Springer, Berlin (1989)

    Google Scholar 

  63. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  64. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms: application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  65. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20, 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  66. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM MMS 4, 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  67. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  68. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  69. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of IEEE International Conference on Image Processing, Austin, vol. 1, pp. 31–35 (1994)

    Google Scholar 

  70. Rudin, L.I., Osher, S., Fatemi, E.: Non linear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  71. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: Multiphase evolution and variational image classification. Technical report 3662, INRIA Sophia Antipolis (1999)

    Google Scholar 

  72. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Applied and Computational Mathematics, Cambridge, United Kingdom, University Press, Cambridge (1996)

    MATH  Google Scholar 

  73. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  74. Shah, J.: A common framework for curve evolution, segmentation and anisotropic diffusion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, pp. 136–142 (1996)

    Google Scholar 

  75. Tamanini, I.: Optimal approximation by piecewise constant functions. In: Serapioni R., Tomarelli F. (eds.) Variational Methods for Discontinuous Structures: Applications to Image Segmentation, Continuum Mechanics, Homogenization, Villa Olmo, Como, 8–10 September 1994. Progress in Nonlinear Differential Equations and Their Applications, vol. 25, pp. 73–85. Birkhäuser, Basel (1996)

    Chapter  Google Scholar 

  76. Tamanini, I., Congedo, G.: Optimal segmentation of unbounded functions. Rend. Sem. Mat. Univ. Padova 95, 153–174 (1996)

    MATH  MathSciNet  Google Scholar 

  77. Tikhonov, A.N., Arsenin, V.: Solutions of Ill-Posed Problems. Winston, Washington (1977)

    MATH  Google Scholar 

  78. Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  79. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  80. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  81. Weisstein, E.W.: Minimal residual method. MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/MinimalResidualMethod.html

  82. You, Y., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Trans. Image Process. 5, 416–428 (1996)

    Article  Google Scholar 

  83. Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Bar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Bar, L. et al. (2015). Mumford and Shah Model and Its Applications to Image Segmentation and Image Restoration. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_25

Download citation

Publish with us

Policies and ethics