Level Set Methods for Structural Inversion and Image Reconstruction

Reference work entry

Abstract

In this chapter, an introduction is given into the use of level set techniques for inverse problems and image reconstruction. Several approaches are presented which have been developed and proposed in the literature since the publication of the original (and seminal) paper by F. Santosa in 1996 on this topic. The emphasis of this chapter, however, is not so much on providing an exhaustive overview of all ideas developed so far but on the goal of outlining the general idea of structural inversion by level sets, which means the reconstruction of complicated images with interfaces from indirectly measured data. As case studies, recent results (in 2D) from microwave breast screening, history matching in reservoir engineering, and crack detection are presented in order to demonstrate the general ideas outlined in this chapter on practically relevant and instructive examples. Various references and suggestions for further research are given as well.

Notes

Acknowledgements

OD thanks Diego Álvarez, Natalia Irishina, Miguel Moscoso and Rossmary Villegas for their collaboration on the exciting topic of level set methods in image reconstruction, and for providing figures which have been included in this chapter. He thanks the Spanish Ministerio de Educacion y Ciencia (Grants FIS2004-22546-E and FIS2007-62673), the European Union (Grant FP6-503259), the French CNRS and Univ. Paris Sud 11, and the Research Councils UK for their support of some of the work which has been presented in this chapter. DL thanks Jean Cea for having introduced him to the fascinating world of shape optimal design, Fadil Santosa for his contribution to his understanding of the linkage between shape optimal design and level set evolutions, and Jean-Paul Zolésio for his precious help on both topics, plus his many insights on topological derivatives.

References

  1. 1.
    Abascal, J.F.P.J., Lambert, M., Lesselier, D., Dorn, O.: 3-D eddy-current imaging of metal tubes by gradient-based, controlled evolution of level sets. IEEE Trans. Magn. 44, 4721–4729 (2009)CrossRefGoogle Scholar
  2. 2.
    Alexandrov, O., Santosa, F.: A topology preserving level set method for shape optimization. J. Comput. Phys. 204, 121–130 (2005)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Alvarez, D., Dorn, O., Irishina, N., Moscoso, M.: Crack detection using a level set strategy. J. Comput. Phys. 228, 5710–57211 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ammari, H., Calmon, P., Iakovleva, E.: Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1, 169–187 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, Berlin (2004)Google Scholar
  7. 7.
    Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216, 573–588 (2005)CrossRefGoogle Scholar
  8. 8.
    Ascher, U.M., Huang, H., van den Doel, K.: Artificial time integration. BIT Numer. Math. 47, 3–25 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Bal, G., Ren, K.: Reconstruction of singular surfaces by shape sensitivity analysis and level set method. Math. Models Methods Appl. Sci. 16, 1347–1374 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ben Ameur, H., Burger, M., Hackl, B.: Level set methods for geometric inverse problems in linear elasticity. Inverse Probl. 20, 673–696 (2004)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Benedetti, M., Lesselier, D., Lambert, M., Massa, A.: Multiple-shape reconstruction by means of mutliregion level sets. IEEE Trans. Geosci. Remote Sens. 48, 2330–2342 (2010)CrossRefGoogle Scholar
  12. 12.
    Ben Hadj Miled, M.K., Miller, E.L.: A projection-based level-set approach to enhance conductivity anomaly reconstruction in electrical resistance tomography. Inverse Probl. 23, 2375–2400 (2007)Google Scholar
  13. 13.
    Berg, J.M., Holmstrom, K.: On parameter estimation using level sets. SIAM J. Control Optim. 37, 1372–1393 (1999)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Berre, I., Lien, M., Mannseth, T.: A level set corrector to an adaptive multiscale permeability prediction. Comput. Geosci. 11, 27–42 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bonnet, M., Guzina, B.B.: Sounding of finite solid bodies by way of topological derivative. Int. J. Numer. Methods Eng. 61, 2344–2373 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Burger, M.: A level set method for inverse problems. Inverse Probl. 17, 1327–1355 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5, 301–329 (2003)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Burger, M.: Levenberg-Marquardt level set methods for inverse obstacle problems. Inverse Probl. 20, 259–282 (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Carpio, A., Rapún, M.-L.: Solving inhomogeneous inverse problems by topological derivative methods. Inverse Probl. 24, 045014 (2008)CrossRefGoogle Scholar
  22. 22.
    Céa, J., Garreau, S., Guillaume, P., Masmoudi, M.: The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188, 713–726 (2000)CrossRefMATHGoogle Scholar
  23. 23.
    Céa, J., Gioan, A., Michel, J.: Quelques résultats sur l’identification de domains. Calcolo 10(3–4), 207–232 (1973)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Céa, J., Haug, E.J. (eds.): Optimization of Distributed Parameter Structures. Sijhoff & Noordhoff, Alphen aan den Rijn (1981)Google Scholar
  25. 25.
    Chan, T.F., Tai, X.-C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2003)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Chung, E.T., Chan, T.F., Tai, X.C.: Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205, 357–372 (2005)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    DeCezaro, A., Leitão, A., Tai, X.-C.: On multiple level-set regularization methods for inverse problems. Inverse Probl. 25, 035004 (2009)CrossRefGoogle Scholar
  29. 29.
    Delfour, M.C., Zolésio, J.-P.: Shape sensitivity analysis via min max differentiability. SIAM J. Control Optim. 26, 34–86 (1988)CrossRefGoogle Scholar
  30. 30.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Analysis, Differential Calculus and Optimization. SIAM Advances in Design and Control. SIAM, Philadelphia (2001)Google Scholar
  31. 31.
    Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Probl. 22, R67–R131 (2006). doi:10.1088/0266-5611/22/4/R01CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Dorn, O., Lesselier, D.: Level set techniques for structural inversion in medical imaging. In: Suri, J.S., Farag, A.A. (eds.) Deformable Models, pp. 61–90. Springer, New York (2007)CrossRefGoogle Scholar
  33. 33.
    Dorn, O., Lesselier, D.: Level set methods for inverse scattering – some recent developments. Inverse Probl. 25, 125001 (2009). doi:10.1088/0266-5611/25/12/125001CrossRefMathSciNetGoogle Scholar
  34. 34.
    Dorn, O., Miller, E., Rappaport, C.: A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Probl. 16, 1119–1156 (2000)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Dorn, O., Villegas, R.: History matching of petroleum reservoirs using a level set technique. Inverse Probl. 24, 035015 (2008)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Duflot, M.: A study of the representation of cracks with level sets. Int. J. Numer. Methods Eng. 70, 1261–1302 (2007)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Kluwer, Dordrecht (1996)Google Scholar
  38. 38.
    Fang, W.: Multi-phase permittivity reconstruction in electrical capacitance tomography by level set methods. Inverse Probl. Sci. Eng. 15, 213–247 (2007)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Feijóo, G.R.: A new method in inverse scattering based on the topological derivative. Inverse Probl. 20, 1819–1840 (2004)CrossRefMATHGoogle Scholar
  40. 40.
    Feijóo, R.A., Novotny, A.A., Taroco, E., Padra, C.: The topological derivative for the Poisson problem. Math. Model Meth. Appl. Sci. 13, 1–20 (2003)CrossRefGoogle Scholar
  41. 41.
    Feng, H., Karl, W.C., Castanon, D.A.: A curve evolution approach to object-based tomographic reconstruction. IEEE Trans. Image Process. 12, 44–57 (2003)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Ferrayé, R., Dauvignac, J.Y., Pichot, C.: An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique. IEEE Trans. Antennas Propag. 51, 1100–1113 (2003)CrossRefGoogle Scholar
  43. 43.
    Frühauf, F., Scherzer, O., Leitao, A.: Analysis of regularization methods for the solution of ill-posed problems involving discontinuous operators. SIAM J. Numer. Anal. 43, 767–786 (2005)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    González-Rodriguez, P., Kindelan, M., Moscoso, M., Dorn, O.: History matching problem in reservoir engineering using the propagation back-propagation method. Inverse Probl. 21, 565–590 (2005)CrossRefMATHGoogle Scholar
  45. 45.
    Guzina, B.B., Bonnet, M.: Small-inclusion asymptotic for inverse problems in acoustics. Inverse Probl. 22, 1761 (2006)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Haber, E.: A multilevel level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 198, 518–534 (2004)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Hackl, B.: Methods for reliable topology changes for perimeter-regularized geometric inverse problems. SIAM J. Numer. Anal. 45, 2201–2227 (2007)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Harabetian, E., Osher, S.: Regularization of ill-posed problems via the level set approach. SIAM J. Appl. Math. 58, 1689–1706 (1998)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Hettlich, F.: Fréchet derivatives in inverse obstacle scattering. Inverse Probl. 11, 371–382 (1995)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Hintermüller, M, Ring, W.: A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64, 442–467 (2003)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Hou, S., Solna, K., Zhao, H.: Imaging of location and geometry for extended targets using the response matrix. J. Comput. Phys. 199, 317–338 (2004)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Irishina, N., Alvarez, D., Dorn, O., Moscoso, M.: Structural level set inversion for microwave breast screening. Inverse Probl. 26, 035015 (2010)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Ito, K.: Level set methods for variational problems and application. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Control and Estimation of Distributed Parameter Systems, pp. 203–217. Birkhäuser, Basel (2002)Google Scholar
  54. 54.
    Ito, K., Kunisch, K., Li, Z.: Level-set approach to an inverse interface problem. Inverse Probl. 17, 1225–1242 (2001)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Jacob, M., Bresler, Y., Toronov, V., Zhang, X., Webb, A.: Level set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging. J. Biomed. Opt. 11, 064029 (2006)CrossRefGoogle Scholar
  56. 56.
    Kao, C.Y., Osher, S., Yablonovitch, E.: Maximizing band gaps in two-dimentional photonic crystals by using level set methods. Appl. Phys. B 81, 235–244 (2005)CrossRefGoogle Scholar
  57. 57.
    Klann, E., Ramlau, R., Ring, W.: A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. J. Comput. Phys. 221, 539–557 (2008)Google Scholar
  58. 58.
    Kortschak, B., Brandstätter, B.: A FEM-BEM approach using level-sets in electrical capacitance tomography. COMPEL 24, 591–605 (2005)CrossRefMATHGoogle Scholar
  59. 59.
    Leitão, A., Alves, M.M.: On level set type methods for elliptic Cauchy problems. Inverse Probl. 23, 2207–2222 (2007)CrossRefMATHGoogle Scholar
  60. 60.
    Leitao, A., Scherzer, O.: On the relation between constraint regularization, level sets and shape optimization. Inverse Probl. 19, L1–L11 (2003)CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    Lie, J., Lysaker, M., Tai, X.: A variant of the level set method and applications to image segmentation. Math. Comput. 75, 1155–1174 (2006)CrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    Lie, J., Lysaker, M., Tai, X.: A binary level set method and some applications for Mumford-Shah image segmentation. IEEE Trans. Image Process. 15, 1171–1181 (2006)CrossRefMATHGoogle Scholar
  63. 63.
    Litman, A.: Reconstruction by level sets of n-ary scattering obstacles. Inverse Probl. 21, S131–S152 (2005)CrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    Litman, A., Lesselier, D., Santosa, D.: Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Probl. 14, 685–706 (1998)CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    Liu, K., Yang, X., Liu, D., et al.: Spectrally resolved three-dimensional bioluminescence tomography with a level-set strategy. J. Opt. Soc. Am. A 27, 1413–1423 (2010)CrossRefGoogle Scholar
  66. 66.
    Lu, Z., Robinson, B.A.: Parameter identification using the level set method. Geophys. Res. Lett. 33, L06404 (2006)Google Scholar
  67. 67.
    Luo, Z., Tong, L.Y., Luo, J.Z., et al.: Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J. Comput. Phys. 228, 2643–2659 (2009)CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    Lysaker, M., Chan, T.F., Li, H., Tai, X.-C.: Level set method for positron emission tomography. Int. J. Biomed. Imaging 2007, 15 (2007). doi:10.1155/2007/26950Google Scholar
  69. 69.
    Masmoudi, M., Pommier, J., Samet, B.: The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Probl. 21, 547–564 (2005)CrossRefMATHMathSciNetGoogle Scholar
  70. 70.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation, vol. 5. SIAM, Philadelphia (2001)Google Scholar
  72. 72.
    Nielsen, L.K., Li, H., Tai, X.C., Aanonsen, S.I., Espedal, M.: Reservoir description using a binary level set model. Comput. Vis. Sci. 13(1), 41–58 (2008)CrossRefMathSciNetGoogle Scholar
  73. 73.
    Novotny, A.A., Feijóo, R.A., Taroco, E., Padra, C.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)CrossRefMATHGoogle Scholar
  74. 74.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)CrossRefMATHGoogle Scholar
  75. 75.
    Osher, S., Santosa, F.: Level set methods for optimisation problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272–288 (2001)MATHMathSciNetGoogle Scholar
  76. 76.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)CrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    Park, W.K., Lesselier, D.: Reconstruction of thin electromagnetic inclusions by a level set method. Inverse Probl. 25, 085010 (2009)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Ramananjaona, C., Lambert, M., Lesselier, D., Zolésio, J.-P.: Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation. Inverse Probl. 17, 1087–1111 (2001)CrossRefMATHGoogle Scholar
  79. 79.
    Ramananjaona, C., Lambert, M., Lesselier, D., Zolésio, J.-P.: On novel developments of controlled evolution of level sets in the field of inverse shape problems. Radio Sci. 37, 8010 (2002)CrossRefGoogle Scholar
  80. 80.
    Ramlau, R., Ring, W.: A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data. J. Comput. Phys. 221, 539–557 (2007)CrossRefMATHMathSciNetGoogle Scholar
  81. 81.
    Rocha de Faria, J., Novotny, A.A., Feijóo, R.A., Taroco, E.: First- and second-order topological sensitivity analysis for inclusions. Inverse Probl. Sci. Eng. 17, 665–679 (2009)Google Scholar
  82. 82.
    Santosa, F.: A level set approach for inverse problems involving obstacles. ESAIM Control Optim. Calc. Var. 1, 17–33 (1996)CrossRefMATHMathSciNetGoogle Scholar
  83. 83.
    Schumacher, A., Kobolev, V.V., Eschenauer, H.A.: Bubble method for topology and shape optimization of structures. J. Struct. Optim. 8, 42–51 (1994)CrossRefGoogle Scholar
  84. 84.
    Schweiger, M., Arridge, S.R., Dorn, O., Zacharopoulos, A., Kolehmainen, V.: Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique. Opt. Lett. 31, 471–473 (2006)CrossRefGoogle Scholar
  85. 85.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  86. 86.
    Sokolowski, J., Zochowski, A.: On topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)CrossRefMATHMathSciNetGoogle Scholar
  87. 87.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)Google Scholar
  88. 88.
    Soleimani, M.: Level-set method applied to magnetic induction tomography using experimental data. Res. Nondestruct. Eval. 18(1), 1–12 (2007)CrossRefMathSciNetGoogle Scholar
  89. 89.
    Soleimani, M., Dorn, O., Lionheart, W.R.B.: A narrowband level set method applied to EIT in brain for cryosurgery monitoring. IEEE Trans. Biomed. Eng. 53, 2257–2264 (2006)CrossRefGoogle Scholar
  90. 90.
    Soleimani, M., Lionheart, W.R.B., Dorn, O.: Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data. Inverse Probl. Sci. Eng. 14, 193–210 (2005)CrossRefGoogle Scholar
  91. 91.
    Suri, J.S., Liu, K., Singh, S., Laxminarayan, S.N., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2D/3D medical imagery: a state-of-the-art review. IEEE Trans. Inf. Technol. Biomed. 6, 8–28 (2002)CrossRefGoogle Scholar
  92. 92.
    Tai, X.-C., Chan, T.F.: A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model. 1, 25–47 (2004)MATHMathSciNetGoogle Scholar
  93. 93.
    Van den Doel, K., Ascher, U.M.: On level set regularization for highly ill-posed distributed parameter estimation problems. J. Comput. Phys. 216, 707–723 (2006)CrossRefMATHMathSciNetGoogle Scholar
  94. 94.
    van den Doel, K., et al.: Dynamic level set regularization for large distributed parameter estimation problems. Inverse Probl. 23, 1271–1288 (2007)CrossRefMATHGoogle Scholar
  95. 95.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford-Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)CrossRefMATHGoogle Scholar
  96. 96.
    Wang, M., Wang, X.: Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193, 469–496 (2004)CrossRefMATHGoogle Scholar
  97. 97.
    Wei, P., Wang, M.Y.: Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng. 78(4), 379–402 (2009)CrossRefMATHGoogle Scholar
  98. 98.
    Ye, J.C., Bresler, Y., Moulin, P.: A self-referencing level-set method for image reconstruction from sparse Fourier samples. Int. J. Comput. Vis. 50, 253–270 (2002)CrossRefMATHGoogle Scholar
  99. 99.
    Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of MathematicsThe University of ManchesterManchesterUK
  2. 2.Instituto Gregorio Millán BarbanyUniversidad Carlos III de MadridLeganés (Madrid)Spain
  3. 3.Laboratoire des Signaux et SystemesCNRSGif-sur-YvetteFrance

Personalised recommendations