Linear Inverse Problems

  • Charles Groetsch
Reference work entry


This introductory treatment of linear inverse problems is aimed at students and neophytes. A historical survey of inverse problems and some examples of model inverse problems related to imaging are discussed to furnish context and texture to the mathematical theory that follows. The development takes place within the sphere of the theory of compact linear operators on Hilbert space, and the singular value decomposition plays an essential role. The primary concern is regularization theory: the construction of convergent well-posed approximations to ill-posed problems. For the most part, the discussion is limited to the familiar regularization method devised by Tikhonov and Phillips.


Inverse Problem Singular Value Decomposition Tikhonov Regularization Finite Rank Extrasolar Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambarzumian, V.: On the derivation of the frequency function of space velocities of the stars from the observed radial velocities. Mon. Not. R. Astron. Soc. Lond. 96, 172–179 (1936)CrossRefGoogle Scholar
  2. 2.
    Anderssen, R.S.: Inverse problems: a pragmatist’s approach to the recovery of information from indirect measurements. Aust. N.Z. Ind. Appl. Math. J. 46, 588–622 (2004)MathSciNetGoogle Scholar
  3. 3.
    Aster, R., Borchers, B., Thurber, C.: Parameter Estimation and Inverse Problems. Elsevier, Boston (2005)MATHGoogle Scholar
  4. 4.
    Bennett, A.: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Ben-Israel, A.: The Moore of the Moore penrose inverse. Electron. J. Linear Algebr. 9, 150–157 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP, London (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Bonilla, L. (ed.): Inverse Problems and Imaging. LNM 1943. Springer, Berlin (2008)Google Scholar
  8. 8.
    Carasso, A., Sanderson, J., Hyman, J.: Digital removal of random media image degradations by solving the diffusion equation backwards in time. SIAM J. Numer. Anal. 15, 344–367 (1978)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chalmond, B.: Modeling and Inverse Problems in Image Analysis. Springer, New York (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Chan, T.F., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Chen, Z., Xu, Y., Yang, H.: Fast collocation methods for solving ill-posed integral equations of the first kind. Inverse Probl. 24, 065007(21) (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Cormack, A.: Representation of a function by its line integrals, with some radiological applications I. J. Appl. Phys. 34, 2722–2727 (1963)CrossRefMATHGoogle Scholar
  13. 13.
    Cormack, A.: Representation of a function by its line integrals, with some radiological applications II. J. Appl. Phys. 35, 2908–2912 (1964)CrossRefMATHGoogle Scholar
  14. 14.
    Cormack, A.: Computed tomography: some history and recent developments. In: Shepp, L.A. (ed.) Computed Tomography. Proceedings of Symposia in Applied Mathematics, vol. 27, pp. 35–42. American Mathematical Society, Providence (1983)Google Scholar
  15. 15.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. 2. Interscience, New York (1962)Google Scholar
  16. 16.
    Craig, I., Brown, J.: Inverse Problems in Astronomy. Adam Hilger, Bristol (1986)MATHGoogle Scholar
  17. 17.
    Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley, New York (1983)MATHGoogle Scholar
  18. 18.
    Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefMATHGoogle Scholar
  20. 20.
    Epstein, C.L.: Introduction to the Mathematics of Medical Imaging. Pearson Education, Upper Saddle River (2003)MATHGoogle Scholar
  21. 21.
    Galilei, G.: Sidereus Nuncius (Trans.: van Helden, A.). University of Chicago Press, Chicago, 1989 (1610)CrossRefGoogle Scholar
  22. 22.
    Gates, E.: Einstein’s Telescope. W.W. Norton, New York (2009)Google Scholar
  23. 23.
    Gladwell, G.M.L.: Inverse Problems in Vibration. Martinus Nijhoff, Dordrecht (1986)CrossRefMATHGoogle Scholar
  24. 24.
    Glasko, V.: Inverse Problems of Mathematical Physics (Trans.: Bincer, A. (Russian)). American Institute of Physics, New York (1984)Google Scholar
  25. 25.
    Goldberg, R.R.: Fourier Transforms. Cambridge University Press, Cambridge (1961)MATHGoogle Scholar
  26. 26.
    Groetsch, C.W.: Comments on Morozov’s Discrepancy Principle. In: Hämmerlin, G., Hoffmann, K.-H. (eds.) Improperly Posed Problems and Their Numerical Treatment, pp. 97–104. Birkhäuser, Basel (1983)CrossRefGoogle Scholar
  27. 27.
    Groetsch, C.W.: On the asymptotic order of convergence of Tikhonov regularization. J. Optim. Theory Appl. 41, 293–298 (1983)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)MATHGoogle Scholar
  29. 29.
    Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind. Integr. Equ. Oper. Theory 13, 67–75 (1990)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Groetsch, C.W.: Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig (1993)CrossRefMATHGoogle Scholar
  31. 31.
    Groetsch, C.W.: The delayed emergence of regularization theory. Bollettino di Storia delle Scienze Matematiche 23, 105–120 (2003)MATHMathSciNetGoogle Scholar
  32. 32.
    Groetsch, C.W.: Nascent function concepts in Nova Scientia. Int. J. Math. Educ. Sci. Technol. 35, 867–875 (2004)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Groetsch, C.W.: Extending Halley’s problem. Math. Sci. 34, 4–10 (2009)MATHMathSciNetGoogle Scholar
  34. 34.
    Groetsch, C.W., Neubauer, A.: Regularization of ill-posed problems: optimal parameter choice in finite dimensions. J. Approx. Theory 58, 184–200 (1989)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. LNM 1894. Springer, New York (2007)Google Scholar
  36. 36.
    Grosser, M.: The Discovery of Neptune. Harvard University Press, Cambridge (1962)Google Scholar
  37. 37.
    Hadamard, J.: Sur les problèmes aux dériveès partielles et leur signification physique. Princet. Univ. Bull. 13, 49–52 (1902)MathSciNetGoogle Scholar
  38. 38.
    Hadamard, J.: Lectures on Cauchy’s Problems in Linear Partial Differential Equations. Yale University Press, New Haven (1923). (Reprinted by Dover, New York, 1952)Google Scholar
  39. 39.
    Halley, E.: A discourse concerning gravity, and its properties, wherein the descent of heavy bodies, and the motion of projects is briey, but fully handled: together with the solution of a problem of great use in gunnery. Philos. Trans. R. Soc. Lond. 16, 3–21 (1686)Google Scholar
  40. 40.
    Hanke, M.: Iterative regularization techniques in image reconstruction. In: Colton, D. et al. (eds.) Surveys on Solution Methods for Inverse Problems, pp. 35–52. Springer, Vienna (2000)CrossRefGoogle Scholar
  41. 41.
    Hanke, M., Groetsch, C.W.: Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 98, 37–53 (1998)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Hansen, P.C.: Rank Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1997)MATHGoogle Scholar
  44. 44.
    Hansen, P.C., Nagy, J., O’Leary, D.: Deblurring images: matrices, spectra, and filtering. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  45. 45.
    Hensel, E.: Inverse Theory and Applications for Engineers. Prentice-Hall, Englewood Cliffs (1991)Google Scholar
  46. 46.
    Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems. Teubner, Leipzig (1986)CrossRefMATHGoogle Scholar
  47. 47.
    Joachimstahl, F.: Über ein attractionsproblem. J. für die reine und angewandte Mathematik 58, 135–137 (1861)CrossRefGoogle Scholar
  48. 48.
    Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Academie Polonaise des Sciences, Cl. d. Sc. Mathém. A, pp. 355–357 (1937)Google Scholar
  49. 49.
    Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Walter de Gruyter, Berlin (2008)CrossRefMATHGoogle Scholar
  50. 50.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York (1993)Google Scholar
  51. 51.
    Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proc. IEEE 91, 1588–1611 (2003)CrossRefGoogle Scholar
  53. 53.
    Morozov, V.A.: On the solution of functional equations by the method of regularization. Sov. Math. Dokl. 7, 414–417 (1966)MATHGoogle Scholar
  54. 54.
    Nashed, M.Z. (ed.): Generalized Inverses and Applications. Academic, New York (1976)MATHGoogle Scholar
  55. 55.
    Natterer, F., Wübberling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)CrossRefMATHGoogle Scholar
  56. 56.
    Newbury, P., Spiteri, R.: Inverting gravitational lenses. SIAM Rev. 44, 111–130 (2002)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Parks, P.C., Kaczmarz, S.: Int. J. Control 57, 1263–1267 (1895–1939)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  59. 59.
    Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    Picard, E.: Sur un théorème général relatif aux équations intégrales de premiére espéce et sur quelques probl_emes de physique mathématique. Rendiconti del Cicolo Matematico di Palermo 29, 79–97 (1910)CrossRefMATHGoogle Scholar
  61. 61.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellshaft der Wissenschaften zur Leipzig 69, 262–277 (1917)Google Scholar
  62. 62.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)MATHGoogle Scholar
  63. 63.
    Sheehan, W., Kollerstrom, N., Waff, C.: The case of the pilfered planet: did the British steal Neptune? Sci. Am. 291(6), 92–99 (2004)CrossRefGoogle Scholar
  64. 64.
    Shepp, L.A. (ed.): Computed Tomography. Proceedings of Symposia in Applied Mathematics, vol. 27. American Mathematical Society, Providence (1983)Google Scholar
  65. 65.
    Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35, 551–566 (1993)CrossRefMATHMathSciNetGoogle Scholar
  66. 66.
    Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nau. SSSR 39, 176–179 (1943)MATHMathSciNetGoogle Scholar
  67. 67.
    Tihonov (Tikhonov), A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 4, 1035–1038 (1963)Google Scholar
  68. 68.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston & Sons, Washington, DC (1977)MATHGoogle Scholar
  69. 69.
    Uhlmann, G. (ed.): Inside Out: Inverse Problems and Applications. Cambridge University Press, New York (2003)Google Scholar
  70. 70.
    Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)CrossRefMATHGoogle Scholar
  71. 71.
    Wing, G.M.: A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding. SIAM, Philadelphia (1992)Google Scholar
  72. 72.
    Wrenn, F.R., Good, M.L., Handler, P.: The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113, 525–527 (1951)CrossRefGoogle Scholar
  73. 73.
    Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Traubert Chair in Science and MathematicsThe CitadelCharlestonUSA

Personalised recommendations