Advertisement

Substrate-Envelope-Guided Design of Drugs with a High Barrier to the Evolution of Resistance

  • Ayşegül Özen
  • Celia A. SchifferEmail author
Reference work entry

Abstract

Drug resistance is a major problem in quickly evolving diseases. One way for drug resistance to emerge is through mutations in the drug target under the selective pressure of therapy. Antiviral drug targets especially have a high mutational plasticity due to the diverse genetic viral population. An ideal antiviral inhibitor should be robust against these quasispecies. Fortunately, a therapeutic target can be evolutionarily constrained by the biological function, which limits the mutational space. Taking advantage of this evolutionary constraint, the substrate-envelope hypothesis quantitatively defines the balance between natural substrate recognition and inhibitor binding and provides a framework to design robust inhibitors that retain potency against mutational ensemble of quasispecies of the target. The Substrate envelope hypothesis, based on structural studies on the proteases of HIV-1 and hepatitis C, provides a structural basis for the specificity of natural substrate recognition and mechanisms for the resistance mutations in the active site.

Keywords

Antiviral HCV NS3/4A HIV-1 protease Crystallography Molecular dynamics Substrate envelope Structure-based drug design 

Notes

Acknowledgments

The research described in this review supported by a combination of the following NIH grants P01 GM109767, R01 AI085051, P01 GM66524, R01 GM65347.

References

  1. Ali A, Reddy GS, Cao H, Anjum SG, Nalam MN, Schiffer CA, Rana TM (2006) Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. J Med Chem 49(25):7342–7356PubMedCrossRefGoogle Scholar
  2. Ali A, Bandaranayake RM, Cai Y, King NM, Kolli M, Mittal S, Murzycki JF, Nalam MN, Nalivaika EA, Ozen A, Prabu-Jeyabalan MM, Thayer K, Schiffer CA (2010) Molecular basis for drug resistance in HIV-1 protease. Viruses 2(11):2509–2535PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alter MJ, Kruszon-Moran D, Nainan OV, McQuillan GM, Gao F, Moyer LA, Kaslow RA, Margolis HS (1999) The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med 341(8):556–562PubMedCrossRefGoogle Scholar
  4. Altman MD, Ali A, Reddy GS, Nalam MN, Anjum SG, Cao H, Chellappan S, Kairys V, Fernandes MX, Gilson MK, Schiffer CA, Rana TM, Tidor B (2008) HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants. J Am Chem Soc 130(19):6099–6113PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bally F, Martinez R, Peters S, Sudre P, Telenti A (2000) Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease. AIDS Res Hum Retroviruses 16(13):1209–1213PubMedCrossRefGoogle Scholar
  6. Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H (1994) Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68(8):5045–5055PubMedPubMedCentralGoogle Scholar
  7. Bartless JA, DeMasi R, Quinn J, Moxham C, Rousseau F (2001) Overview of the effectiveness of triple combination therapy in antiretroviral-naive HIV-1 infected adults. AIDS 15(11):1369–1377CrossRefGoogle Scholar
  8. Beran RK, Pyle AM (2008) Hepatitis C viral NS3-4A protease activity is enhanced by the NS3 helicase. J Biol Chem 283(44):29929–29937PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beran RK, Serebrov V, Pyle AM (2007) The serine protease domain of hepatitis C viral NS3 activates RNA helicase activity by promoting the binding of RNA substrate. J Biol Chem 282(48):34913–34920PubMedCrossRefGoogle Scholar
  10. Beran RK, Lindenbach BD, Pyle AM (2009) The NS4A protein of hepatitis C virus promotes RNA-coupled ATP hydrolysis by the NS3 helicase. J Virol 83(7):3268–3275PubMedPubMedCentralCrossRefGoogle Scholar
  11. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blatt LM, Mutchnick MG, Tong MJ, Klion FM, Lebovics E, Freilich B, Bach N, Smith C, Herrera J, Tobias H, Conrad A, Schmid P, McHutchison JG (2000) Assessment of hepatitis C virus RNA and genotype from 6807 patients with chronic hepatitis C in the United States. J Viral Hepat 7(3):196–202PubMedCrossRefGoogle Scholar
  13. Bleiber G, Munoz M, Ciuffi A, Meylan P, Telenti A (2001) Individual contributions of mutant protease and reverse transcriptase to viral infectivity, replication, and protein maturation of antiretroviral drug-resistant human immunodeficiency virus type 1. J Virol 75(7):3291–3300PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brenndorfer ED, Karthe J, Frelin L, Cebula P, Erhardt A, Schulte am Esch J, Hengel H, Bartenschlager R, Sallberg M, Haussinger D, Bode JG (2009) Nonstructural 3/4A protease of hepatitis C virus activates epithelial growth factor-induced signal transduction by cleavage of the T-cell protein tyrosine phosphatase. Hepatology 49(6):1810–1820PubMedCrossRefGoogle Scholar
  15. Bukh J, Miller RH, Purcell RH (1995a) Biology and genetic heterogeneity of hepatitis C virus. Clin Exp Rheumatol 13(Suppl 13):S3–S7PubMedGoogle Scholar
  16. Bukh J, Miller RH, Purcell RH (1995b) Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis 15(1):41–63PubMedCrossRefGoogle Scholar
  17. Chellappan S, Kairys V, Fernandes MX, Schiffer C, Gilson MK (2007a) Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease. Proteins 68(2):561–567PubMedCrossRefGoogle Scholar
  18. Chellappan S, Kiran Kumar Reddy GS, Ali A, Nalam MN, Anjum SG, Cao H, Kairys V, Fernandes MX, Altman MD, Tidor B, Rana TM, Schiffer CA, Gilson MK (2007b) Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem Biol Drug Des 69(5):298–313PubMedCrossRefGoogle Scholar
  19. Chen Z, Benureau Y, Rijnbrand R, Yi J, Wang T, Warter L, Lanford RE, Weinman SA, Lemon SM, Martin A, Li K (2007) GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J Virol 81(2):964–976PubMedCrossRefGoogle Scholar
  20. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244(4902):359–362PubMedCrossRefGoogle Scholar
  21. Coffin JM (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267(5197):483–489PubMedCrossRefGoogle Scholar
  22. Colonno R, Rose R, McLaren C, Thiry A, Parkin N, Friborg J (2004) Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis 189(10):1802–1810PubMedCrossRefGoogle Scholar
  23. Condra JH, Holder DJ, Schleif WA, Blahy OM, Danovich RM, Gabryelski LJ, Graham DJ, Laird D, Quintero JC, Rhodes A, Robbins HL, Roth E, Shivaprakash M, Yang T, Chodakewitz JA, Deutsch PJ, Leavitt RY, Massari FE, Mellors JW, Squires KE, Steigbigel RT, Teppler H, Emini EA (1996) Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol 70:8270–8276PubMedPubMedCentralGoogle Scholar
  24. Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D (1997) Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J Virol 71(2):1089–1096PubMedPubMedCentralGoogle Scholar
  25. De Francesco R, Migliaccio G (2005) Challenges and successes in developing new therapies for hepatitis C. Nature 436(7053):953–960PubMedCrossRefGoogle Scholar
  26. De Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R, Wigerinck P, de Bethune MP (2005) TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother 49(6):2314–2321PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dorsey BD, Levin RB, McDaniel SL, Vacca JP, Guare JP, Darke PL, Zugay JA, Emini EA, Schleif WA, Quintero JC et al (1994) L-735,524: the design of a potent and orally bioavailable HIV protease inhibitor. J Med Chem 37(21):3443–3451PubMedCrossRefGoogle Scholar
  28. Doyon L, Croteau G, Thibeault D, Poulin F, Pilote L, Lamarre D (1996) Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70(6):3763–3769PubMedPubMedCentralGoogle Scholar
  29. Foulkes-Murzycki JE, Scott WR, Schiffer CA (2007) Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease. Structure 15(2):225–233PubMedPubMedCentralCrossRefGoogle Scholar
  30. Freddolino PL, Arkhipov AS, Larson SB, McPherson A, Schulten K (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14(3):437–449PubMedCrossRefGoogle Scholar
  31. Frick DN, Rypma RS, Lam AM, Gu B (2004) The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Biol Chem 279(2):1269–1280PubMedCrossRefGoogle Scholar
  32. Gallinari P, Brennan D, Nardi C, Brunetti M, Tomei L, Steinkuhler C, De Francesco R (1998) Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. J Virol 72(8):6758–6769PubMedPubMedCentralGoogle Scholar
  33. Joint United Nations Programme on HIV/AIDS (UNAIDS) Global report: UNAIDS report on the global AIDS epidemic 2013. Geneva, UNAIDS/JC2502/1/E, UNAIDSGoogle Scholar
  34. Gulick RM, Mellors JW, Havlir D, Eron JJ, Meibohm A, Condra JH, Valentine FT, McMahon D, Gonzalez C, Jonas L, Emini EA, Chodakewitz JA, Isaacs R, Richman DD (2000) 3-year suppression of HIV viremia with indinavir, zidovudine, and lamivudine. Ann Intern Med 133(1):35–39PubMedCrossRefGoogle Scholar
  35. Harper S, McCauley JA, Rudd MT, Ferrara M, DiFilippo M, Crescenzi B, Koch U, Petrocchi A, Holloway MK, Butcher JW, Romano JJ, Bush KJ, Gilbert KF, McIntyre CJ, Nguyen KT, Nizi E, Carroll SS, Ludmerer SW, Burlein C, DiMuzio JM, Graham DJ, McHale CM, Stahlhut MW, Olsen DB, Monteagudo E, Cianetti S, Giuliano C, Pucci V, Trainor N, Fandozzi CM, Rowley M, Coleman PJ, Vacca JP, Summa V, Liverton NJ (2012) Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor. ACS Med Chem Lett 3(4):332–336PubMedPubMedCentralCrossRefGoogle Scholar
  36. He Y, King MS, Kempf DJ, Lu L, Lim HB, Krishnan P, Kati W, Middleton T, Molla A (2008) Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother 52(3):1101–1110PubMedCrossRefGoogle Scholar
  37. Heim MH (2013) Innate immunity and HCV. J Hepatol 58(3):564–574PubMedCrossRefGoogle Scholar
  38. Hinrichsen H, Benhamou Y, Wedemeyer H, Reiser M, Sentjens RE, Calleja JL, Forns X, Erhardt A, Cronlein J, Chaves RL, Yong CL, Nehmiz G, Steinmann GG (2004) Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 127(5):1347–1355PubMedCrossRefGoogle Scholar
  39. Hoggs RS, Heath KV, Yip B et al (1998) Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. J Am Med Assoc 279:450–454CrossRefGoogle Scholar
  40. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, Shafer RW, Wensing AM, Richman DD (2013) Update of the drug resistance mutations in HIV-1: March 2013. Top Antivir Med 21(1):6–14PubMedGoogle Scholar
  41. Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX (2009) Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Chem Biol Drug Des 74(3):234–245PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kaldor SW, Kalish VJ, Davies JN, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH (1997) Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40(24):3979–3985PubMedCrossRefGoogle Scholar
  43. Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB (2013) DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 435(2):385–394PubMedCrossRefGoogle Scholar
  44. Kantor R, Fessel WJ, Zolopa AR, Israelski D, Shulman N, Montoya JG, Harbour M, Schapiro JM, Shafer RW (2002) Evolution of primary protease inhibitor resistance mutations during protease inhibitor salvage therapy. Antimicrob Agents Chemother 46(4):1086–1092PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kantor R, Katzenstein DA, Efron B, Carvalho AP, Wynhoven B, Cane P, Clarke J, Sirivichayakul S, Soares MA, Snoeck J, Pillay C, Rudich H, Rodrigues R, Holguin A, Ariyoshi K, Bouzas MB, Cahn P, Sugiura W, Soriano V, Brigido LF, Grossman Z, Morris L, Vandamme AM, Tanuri A, Phanuphak P, Weber JN, Pillay D, Harrigan PR, Camacho R, Schapiro JM, Shafer RW (2005) Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS Med 2(4):e112PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kempf DJ, Marsh KC, Denissen JF, McDonald E, Vasavanonda S, Flentge CA, Green BE, Fino L, Park CH, Kong XP et al (1995) ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Natl Acad Sci U S A 92(7):2484–2488PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kempf DJ, Isaacson JD, King MS, Brun SC, Xu Y, Real K, Bernstein BM, Japour AJ, Sun E, Rode RA (2001) Identification of genotypic changes in human immunodeficiency virus protease that correlate with reduced susceptibility to the protease inhibitor lopinavir among viral isolates from protease inhibitor-experienced patients. J Virol 75(16):7462–7469PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kieffer TL, Sarrazin C, Miller JS, Welker MW, Forestier N, Reesink HW, Kwong AD, Zeuzem S (2007) Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46(3):631–639PubMedCrossRefGoogle Scholar
  49. Kim EE, Baker CT, Dwyer MD, Murcko MA et al (1995) Crystal structure of HIV-1 protease in complex with vx-478, a potent and orally bioavailable inhibitor of the enzyme. J Am Chem Soc 117:1181–1182CrossRefGoogle Scholar
  50. King NM, Prabu-Jeyabalan M, Nalivaika EA, Schiffer CA (2004a) Combating susceptibility to drug resistance: lessons from HIV-1 protease. Chem Biol 11(10):1333–1338PubMedGoogle Scholar
  51. King NM, Prabu-Jeyabalan M, Nalivaika EA, Wigerinck P, de Bethune MP, Schiffer CA (2004b) Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J Virol 78(21):12012–12021PubMedPubMedCentralCrossRefGoogle Scholar
  52. Koh Y, Nakata H, Maeda K, Ogata H, Bilcer G, Devasamudram T, Kincaid JF, Boross P, Wang YF, Tie Y, Volarath P, Gaddis L, Harrison RW, Weber IT, Ghosh AK, Mitsuya H (2003) Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother 47(10):3123–3129PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnick EM, Sigal IS (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85(13):4686–4690PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kolli M, Lastere S, Schiffer CA (2006) Co-evolution of nelfinavir-resistant HIV-1 protease and the p1-p6 substrate. Virology 347(2):405–409PubMedCrossRefGoogle Scholar
  55. Kolli M, Stawiski E, Chappey C, Schiffer CA (2009) Human immunodeficiency virus type 1 protease-correlated cleavage site mutations enhance inhibitor resistance. J Virol 83(21):11027–11042PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kuo G, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyamura T, Dienstag JL, Alter MJ, Stevens CE et al (1989) An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244(4902):362–364PubMedCrossRefGoogle Scholar
  57. Kwong AD, Kauffman RS, Hurter P, Mueller P (2011) Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29(11):993–1003PubMedCrossRefGoogle Scholar
  58. Lam AM, Keeney D, Eckert PQ, Frick DN (2003) Hepatitis C virus NS3 ATPases/helicases from different genotypes exhibit variations in enzymatic properties. J Virol 77(7):3950–3961PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bos M, Cameron DR, Cartier M, Cordingley MG, Faucher AM, Goudreau N, Kawai SH, Kukolj G, Lagace L, LaPlante SR, Narjes H, Poupart MA, Rancourt J, Sentjens RE, St George R, Simoneau B, Steinmann G, Thibeault D, Tsantrizos YS, Weldon SM, Yong CL, Llinas-Brunet M (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426(6963):186–189PubMedCrossRefGoogle Scholar
  60. Lefebvre E, Schiffer CA (2008) Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir. AIDS Rev 10(3):131–142PubMedPubMedCentralGoogle Scholar
  61. Lesage S, Condroyer C, Lannuzel A, Lohmann E, Troiano A, Tison F, Damier P, Thobois S, Ouvrard-Hernandez AM, Rivaud-Pechoux S, Brefel-Courbon C, Destee A, Tranchant C, Romana M, Leclere L, Durr A, Brice A (2009) Molecular analyses of the LRRK2 gene in European and North African autosomal dominant Parkinson’s disease. J Med Genet 46(7):458–464PubMedCrossRefGoogle Scholar
  62. Li XD, Sun L, Seth RB, Pineda G, Chen ZJ (2005a) Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A 102(49):17717–17722PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, Ray SC, Gale M Jr, Lemon SM (2005b) Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 102(8):2992–2997PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lin C, Gates CA, Rao BG, Brennan DL, Fulghum JR, Luong YP, Frantz JD, Lin K, Ma S, Wei YY, Perni RB, Kwong AD (2005) In vitro studies of cross-resistance mutations against two hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061. J Biol Chem 280(44):36784–36791PubMedCrossRefGoogle Scholar
  65. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334(6055):517–520PubMedCrossRefGoogle Scholar
  66. Liverton NJ, Carroll SS, Dimuzio J, Fandozzi C, Graham DJ, Hazuda D, Holloway MK, Ludmerer SW, McCauley JA, McIntyre CJ, Olsen DB, Rudd MT, Stahlhut M, Vacca JP (2010) MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. Antimicrob Agents Chemother 54(1):305–311PubMedCrossRefGoogle Scholar
  67. Llinas-Brunet M, Bailey M, Fazal G, Goulet S, Halmos T, Laplante S, Maurice R, Poirier M, Poupart MA, Thibeault D, Wernic D, Lamarre D (1998) Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg Med Chem Lett 8(13):1713–1718PubMedCrossRefGoogle Scholar
  68. Maguire MF, Guinea R, Griffin P, Macmanus S, Elston RC, Wolfram J, Richards N, Hanlon MH, Porter DJ, Wrin T, Parkin N, Tisdale M, Furfine E, Petropoulos C, Snowden BW, Kleim JP (2002) Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J Virol 76(15):7398–7406PubMedPubMedCentralCrossRefGoogle Scholar
  69. Malcolm BA, Liu R, Lahser F, Agrawal S, Belanger B, Butkiewicz N, Chase R, Gheyas F, Hart A, Hesk D, Ingravallo P, Jiang C, Kong R, Lu J, Pichardo J, Prongay A, Skelton A, Tong X, Venkatraman S, Xia E, Girijavallabhan V, Njoroge FG (2006) SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrob Agents Chemother 50(3):1013–1020PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mammano F, Petit C, Clavel F (1998) Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J Virol 72(9):7632–7637PubMedPubMedCentralGoogle Scholar
  71. Martinez-Picado J, Savara AV, Sutton L, D’Aquila RT (1999) Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol 73(5):3744–3752PubMedPubMedCentralGoogle Scholar
  72. Martinez-Picado J, Savara AV, Shi L, Sutton L, D’Aquila RT (2000) Fitness of human immunodeficiency virus type 1 protease inhibitor-selected single mutants. Virology 275(2):318–322PubMedCrossRefGoogle Scholar
  73. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590PubMedCrossRefGoogle Scholar
  74. Mittal S, Cai Y, Nalam MN, Bolon DN, Schiffer CA (2012) Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J Am Chem Soc 134(9):4163–4168PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nalam MN, Schiffer CA (2008) New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr Opin HIV AIDS 3(6):642–646PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nalam MN, Ali A, Altman MD, Reddy GS, Chellappan S, Kairys V, Ozen A, Cao H, Gilson MK, Tidor B, Rana TM, Schiffer CA (2010) Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. J Virol 84(10):5368–5378PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ozen A, Haliloglu T, Schiffer CA (2011) Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope. J Mol Biol 410(4):726–744PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ozen A, Haliloglu T, Schiffer CA (2012) HIV-1 protease and substrate coevolution validates the substrate envelope as the recognition pattern. J Chem Theory Comput 8:703–714CrossRefGoogle Scholar
  79. Ozen A, Sherman W, Schiffer CA (2013) Improving the resistance profile of hepatitis C NS3/4A inhibitors: dynamic substrate envelope guided design. J Chem Theory Comput 9:5693–5705PubMedPubMedCentralCrossRefGoogle Scholar
  80. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med 338(13):853–860PubMedCrossRefGoogle Scholar
  81. Patick AK, Duran M, Cao Y, Shugarts D, Keller MR, Mazabel E, Knowles M, Chapman S, Kuritzkes DR, Markowitz M (1998) Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolated from patients treated with the protease inhibitor nelfinavir. Antimicrob Agents Chemother 42(10):2637–2644PubMedPubMedCentralGoogle Scholar
  82. Perni RB, Almquist SJ, Byrn RA, Chandorkar G, Chaturvedi PR, Courtney LF, Decker CJ, Dinehart K, Gates CA, Harbeson SL, Heiser A, Kalkeri G, Kolaczkowski E, Lin K, Luong YP, Rao BG, Taylor WP, Thomson JA, Tung RD, Wei Y, Kwong AD, Lin C (2006) Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3-4A serine protease. Antimicrob Agents Chemother 50(3):899–909PubMedPubMedCentralCrossRefGoogle Scholar
  83. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2000) How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol 301(5):1207–1220PubMedCrossRefGoogle Scholar
  84. Prabu-Jeyabalan M, Nalivaika E, Schiffer CA (2002) Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 10(3):369–381PubMedCrossRefGoogle Scholar
  85. Rhee SY, Gonzales MJ, Kantor R, Betts BJ, Ravela J, Shafer RW (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Res 31(1):298–303PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rhee SY, Taylor J, Fessel WJ, Kaufman D, Towner W, Troia P, Ruane P, Hellinger J, Shirvani V, Zolopa A, Shafer RW (2010) HIV-1 protease mutations and protease inhibitor cross-resistance. Antimicrob Agents Chemother 54(10):4253–4261PubMedPubMedCentralCrossRefGoogle Scholar
  87. Roberts NA, Martin JA, Kinchington D, Broadhurst AV, Craig JC, Duncan IB, Galpin SA, Handa BK, Kay J, Krohn A et al (1990) Rational design of peptide-based HIV proteinase inhibitors. Science 248(4953):358–361PubMedCrossRefGoogle Scholar
  88. Robinson BS, Riccardi KA, Gong YF, Guo Q, Stock DA, Blair WS, Terry BJ, Deminie CA, Djang F, Colonno RJ, Lin PF (2000a) BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents. Antimicrob Agents Chemother 44(8):2093–2099PubMedPubMedCentralCrossRefGoogle Scholar
  89. Robinson LH, Myers RE, Snowden BW, Tisdale M, Blair ED (2000b) HIV type 1 protease cleavage site mutations and viral fitness: implications for drug susceptibility phenotyping assays. AIDS Res Hum Retroviruses 16:1149–1156PubMedCrossRefGoogle Scholar
  90. Romano KP, Ali A, Royer WE, Schiffer CA (2010) Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci U S A 107(49):20986–20991PubMedPubMedCentralCrossRefGoogle Scholar
  91. Romano KP, Ali A, Aydin C, Soumana D, Ozen A, Deveau LM, Silver C, Cao H, Newton A, Petropoulos CJ, Huang W, Schiffer CA (2012) The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 8(7):e1002832PubMedPubMedCentralCrossRefGoogle Scholar
  92. Santos AF, Soares MA (2010) HIV genetic diversity and drug resistance. Viruses 2(2):503–531PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sarrazin C, Rouzier R, Wagner F, Forestier N, Larrey D, Gupta SK, Hussain M, Shah A, Cutler D, Zhang J, Zeuzem S (2007) SCH 503034, a novel hepatitis C virus protease inhibitor, plus pegylated interferon alpha-2b for genotype 1 nonresponders. Gastroenterology 132(4):1270–1278PubMedCrossRefGoogle Scholar
  94. Schapiro JM, Winters MA, Stewart F, Efron B, Norris J, Kozal MJ, Merigan TC (1996) The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med 124(12):1039–1050PubMedCrossRefGoogle Scholar
  95. Seiwert SD, Kossen K, Pan L, Liu J, Buckman BO (2011) Discovery and development of the HCV NS3/4A protease inhibitor danoprevir (ITMN-191/RG7227). In: Antiviral drugs. Wiley, Hoboken, New Jersey, pp 257–271Google Scholar
  96. Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen C-M, Kati W, Stewart K, Lal R, Hsu A, Betebenner D, Korneyeva M, Vasavanonda S, McDonald E, Saldivar A, Wideburg N, Chen X, Niu P, Park C, Jayanti V, Grabowski B, Granneman GR, Sun E, Japour AJ, Leonard JM, Plattner JJ, Norbeck DW (1998) ABT-378, a highly potent inhibitor of human immunodeficiency virus protease. Antimicrob Agents Chemother 42(12):3218–3224PubMedPubMedCentralGoogle Scholar
  97. Simmonds P, Bukh J, Combet C, Deleage G, Enomoto N, Feinstone S, Halfon P, Inchauspe G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin IT, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42(4):962–973PubMedCrossRefGoogle Scholar
  98. Soo-Yon Rhee, Matthew J. Gonzales, Rami Kantor, Bradley J. Betts, Jaideep Ravela, and Robert W. Shafer (2003) Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research, 31(1), 298–303PubMedPubMedCentralCrossRefGoogle Scholar
  99. Steinkuhler C, Biasiol G, Brunetti M, Urbani A, Koch U, Cortese R, Pessi A, De Francesco R (1998) Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37(25):8899–8905PubMedCrossRefGoogle Scholar
  100. Surleraux DL, Tahri A, Verschueren WG, Pille GM, de Kock HA, Jonckers TH, Peeters A, De Meyer S, Azijn H, Pauwels R, de Bethune MP, King NM, Prabu-Jeyabalan M, Schiffer CA, Wigerinck PB (2005) Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J Med Chem 48(6):1813–1822PubMedCrossRefGoogle Scholar
  101. Tong X, Chase R, Skelton A, Chen T, Wright-Minogue J, Malcolm BA (2006) Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral Res 70(2):28–38PubMedCrossRefGoogle Scholar
  102. Tong X, Bogen S, Chase R, Girijavallabhan V, Guo Z, Njoroge FG, Prongay A, Saksena A, Skelton A, Xia E, Ralston R (2008) Characterization of resistance mutations against HCV ketoamide protease inhibitors. Antiviral Res 77(3):177–185PubMedCrossRefGoogle Scholar
  103. Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, Dolak LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JC, Chong KT, Hinshaw RR, Watenpaugh KD, Janakiraman MN, Thaisrivongs S (1998) Tipranavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. J Med Chem 41(18):3467–3476PubMedCrossRefGoogle Scholar
  104. Tuske S, Sarafianos SG, Clark AD Jr, Ding J, Naeger LK, White KL, Miller MD, Gibbs CS, Boyer PL, Clark P, Wang G, Gaffney BL, Jones RA, Jerina DM, Hughes SH, Arnold E (2004) Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat Struct Mol Biol 11(5):469–474PubMedCrossRefGoogle Scholar
  105. Vanwolleghem T, Meuleman P, Libbrecht L, Roskams T, De Vos R, Leroux-Roels G (2007) Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 133(4):1144–1155PubMedCrossRefGoogle Scholar
  106. Wu TD, Schiffer CA, Gonzales M, Kantor R, Chou S, Israelski D, Zolopa A, Fessel J, Shafer RW (2003) Mutation patterns and structural correlates in HIV-1 protease following varying degrees of protease inhibitor treatment. J Virol 77:4836–4847PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhang YM, Imamichi H, Imamichi T, Lane HC, Falloon J, Vasudevachari MB, Salzman NP (1997) Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J Virol 71(9):6662–6670PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations