HIV-1 Resistance to Reverse Transcriptase Inhibitors

  • Grant Schauer
  • Nicolas Sluis-CremerEmail author
Reference work entry


Purpose of Review: This review discusses the mutations and mechanisms associated with HIV -1 resistance to nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and nonnucleoside RT inhibitors (NNRTIs).

Recent Findings: First-line antiretroviral therapy (ART) for the treatment of HIV-1 infection typically includes two NRTIs in combination with an NNRTI or a protease inhibitor. NRTIs and NNRTIs are also routinely used in second-line and salvage ART therapies. HIV-1 resistance to all of the FDA-approved NRTIs and NNRTIs has been documented. An understanding of the mutations associated with RT inhibitor (RTI) resistance, the antagonistic or complementary interactions between RTI-resistance mutations, and the mechanisms of HIV-1 resistance to RTIs is of critical importance for the development and formulation of effective ART therapies. Of concern, there has been a significant increase in circulating and transmitted NNRTI drug resistance in resource-limited settings due to the extensive use of NNRTIs in prevention and treatment strategies for HIV-1 infection. Despite this increase in NNRTI drug resistance, the diarylpyrimidine NNRTIs, dapivirine, etravirine, and rilpivirine, will be increasingly used in resource-limited settings. As such, there is a continued need to monitor and understand NNRTI resistance, particularly in sub-Saharan Africa where non-subtype B HIV-1 predominates.

Summary: This review describes HIV-1 resistance to NRTIs and NNRTIs.


HIV Reverse transcriptase Nannucleosicle Efavirens Neviapine Rilpivirine Etravirine 



Research in the Sluis-Cremer laboratory was supported by grants AI081571, GM068406, and AI071846 from the National Institutes of Health (NIH), United States of America. Grant Schauer was supported by an NIH training grant (T32GM088119).


  1. Andries K, Azijn H, Thielemans T et al (2004) TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 48:4680–4686CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anta L, Llibre JM, Poveda E et al (2013) Resistance Platform of the Spanish AIDS Research Network. Rilpivirine resistance mutations in HIV patients failing non-nucleoside reverse transcriptase inhibitor-based therapies. AIDS 27:81–85CrossRefPubMedGoogle Scholar
  3. Arion D, Kaushik N, McCormick S et al (1998) Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37:15908–15917CrossRefPubMedGoogle Scholar
  4. Azijn H, Tirry I, Vingerhoets J et al (2010) TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-resistant HIV-1. Antimicrob Agents Chemother 54:718–727CrossRefPubMedGoogle Scholar
  5. Baert L, van’t Klooster G, Dries W et al (2009) Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharm Biopharm 72:502–508CrossRefPubMedGoogle Scholar
  6. Balotta C, Violin M, Monno L et al (2000) Prevalence of multiple dideoxynucleoside analogue resistance (MddNR) in a multicenter cohort of HIV-1-infected Italian patients with virologic failure. J Acquir Immune Defic Syndr 24:232–240CrossRefPubMedGoogle Scholar
  7. Barth RE, van der Loeff MF, Schuurman R et al (2010) Virological follow-up of adult patients in antiretroviral treatment programmes in sub-Saharan Africa: a systematic review. Lancet Infect Dis 10:155–166CrossRefPubMedGoogle Scholar
  8. Biondi MJ, Beilhartz GL, McCormick S, Gotte M (2010) N348I in HIV-1 reverse transcriptase can counteract the nevirapine-mediated bias toward RNase H cleavage during plus-strand initiation. J Biol Chem 285:26966–26975CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boyer PL, Sarafianos SG, Arnold E, Hughes SH (2002) Nucleoside analog resistance caused by insertions in the fingers of human immunodeficiency virus type 1 reverse transcriptase involves ATP-mediated excision. J Virol 76:9143–9151CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brehm JH, Scott Y, Koontz DL et al (2012) Zidovudine (AZT) monotherapy selects for the A360V mutation in the connection domain of HIV-1 reverse transcriptase. PLoS One 7:e31558CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brenner B, Turner D, Oliveira M et al (2003) A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. AIDS 17:F1–F5CrossRefPubMedGoogle Scholar
  12. Chen R, Quinones-Mateu ME, Mansky LM (2004) Drug resistance, virus fitness and HIV-1 mutagenesis. Curr Pharm Des 10:4065–4070CrossRefPubMedGoogle Scholar
  13. Cherrington JM, Mulato AS, Fuller MD, Chen MS (1996) Novel mutation (K70E) in human immunodeficiency virus type 1 reverse transcriptase confers decreased susceptibility to 9-[2-(phosphonomethoxy)ethyl]adenine in vitro. Antimicrob Agents Chemother 40:2212–2216PubMedPubMedCentralGoogle Scholar
  14. Cohen CJ, Molina JM, Cassetti I et al (2013) Week 96 efficacy and safety of rilpivirine in treatment-naive, HIV-1 patients in two Phase III randomized trials. AIDS 27:939–950CrossRefPubMedGoogle Scholar
  15. Coutsinos D, Invernizzi CF, Xu H et al (2010) Factors affecting template usage in the development of K65R resistance in subtype C variants of HIV type-1. Antivir Chem Chemother 20:117–131CrossRefPubMedGoogle Scholar
  16. Das K, Bandwar RP, White KL et al (2009) Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J Biol Chem 284:35092–35100CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deval J, Selmi B, Boretto J et al (2002) The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J Biol Chem 277:42097–42104CrossRefPubMedGoogle Scholar
  18. Deval J, Courcambeck J, Selmi B et al (2004a) Structural determinants and molecular mechanisms for the resistance of HIV-1 RT to nucleoside analogues. Curr Drug Metab 5:305–316CrossRefPubMedGoogle Scholar
  19. Deval J, White KL, Miller MD et al (2004b) Mechanistic basis for reduced viral and enzymatic fitness of HIV-1 reverse transcriptase containing both K65R and M184V mutations. J Biol Chem 279:509–516CrossRefPubMedGoogle Scholar
  20. Deval J, Navarro JM, Selmi B et al (2004c) A loss of viral replicative capacity correlates with altered DNA polymerization kinetics by the human immunodeficiency virus reverse transcriptase bearing the K65R and L74V dideoxynucleoside resistance substitutions. J Biol Chem 279:25489–25496CrossRefPubMedGoogle Scholar
  21. Ehteshami M, Beilhartz GL, Scarth BJ et al (2008) Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3′-azido-3′-deoxythymidine through both RNase H-dependent and -independent mechanisms. J Biol Chem 283:22222–22232CrossRefPubMedPubMedCentralGoogle Scholar
  22. Faraj A, Agrofoglio LA, Wakefield JK et al (1994) Inhibition of human immunodeficiency virus type 1 reverse transcriptase by the 5′-triphosphate beta enantiomers of cytidine analogs. Antimicrob Agents Chemother 38:2300–2305CrossRefPubMedPubMedCentralGoogle Scholar
  23. Feng JY, Anderson KS (1998) Mechanistic studies examining the efficiency and fidelity of DNA synthesis by the 3TC-resistant mutant (184 V) of HIV-1 reverse transcriptase. Biochemistry 38:9440–9448CrossRefGoogle Scholar
  24. Gao HQ, Boyer PL, Sarafianos SG et al (2000) The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J Mol Biol 300:403–418CrossRefPubMedGoogle Scholar
  25. Girouard M, Diallo K, Marchand B et al (2003) Mutations E44D and V118I in the reverse transcriptase of HIV-1 play distinct mechanistic roles in dual resistance to AZT and 3TC. J Biol Chem 278:34403–34410CrossRefPubMedGoogle Scholar
  26. Goody RS, Muller B, Restle T (1991) Factors contributing to the inhibition of HIV reverse transcriptase by chain-terminating nucleotides in vitro and in vivo. FEBS Lett 291:1–5CrossRefPubMedGoogle Scholar
  27. Gotte M, Arion D, Parniak MA, Wainberg MA (2000) The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis. J Virol 74:3579–3585CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gupta RK, Hill A, Sawyer AW et al (2009) Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infect Dis 9:409–417CrossRefPubMedGoogle Scholar
  29. Gupta S, Vingerhoets J, Fransen S et al (2011) Connection domain mutations in HIV-1 reverse transcriptase do not impact etravirine susceptibility and virologic responses to etravirine-containing regimens. Antimicrob Agents Chemother 55:2872–2879CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gupta RK, Jordan MR, Sultan BJ et al (2012) Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet 380:1250–1258CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hachiya A, Kodama EN, Sarafianos SG et al (2008) Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol 82:3261–3270CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hamers RL, Sigaloff KC, Wensing AM et al (2012) Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: implications for second-line ART strategies. Clin Infect Dis 54:1660–1669CrossRefPubMedGoogle Scholar
  33. Hammond JL, Parikh UM, Koontz DL et al (2005) In vitro selection and analysis of human immunodeficiency virus type 1 resistant to derivatives of beta-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine. Antimicrob Agents Chemother 49:3930–3932CrossRefPubMedPubMedCentralGoogle Scholar
  34. Harrigan PR, Kinghorn I, Bloor S et al (1996) Significance of amino acid variation at human immunodeficiency virus type 1 reverse transcriptase residue 210 for zidovudine susceptibility. J Virol 70:5930–5934PubMedPubMedCentralGoogle Scholar
  35. Hooker DJ, Tachedjian G, Solomon AE et al (1996) An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3′-azido-3′-deoxythymidine. J Virol 70:8010–8018PubMedPubMedCentralGoogle Scholar
  36. Hosseinipour MC, van Oosterhout JJ, Weigel R et al (2009) The public health approach to identify antiretroviral therapy failure: high-level nucleoside reverse transcriptase inhibitor resistance among Malawians failing first-line antiretroviral therapy. AIDS 23:1127–1134CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hu Z, Kuritzkes DR (2011) Interaction of reverse transcriptase (RT) mutations conferring resistance to lamivudine and etravirine: effects on fitness and RT activity of human immunodeficiency virus type 1. J Virol 85:11309–11314CrossRefPubMedPubMedCentralGoogle Scholar
  38. Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675CrossRefPubMedGoogle Scholar
  39. Huang W, Gamarnik A, Limoli K et al (2003) Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication. J Virol 77:1512–1523CrossRefPubMedPubMedCentralGoogle Scholar
  40. Invernizzi CF, Coutsinos D, Oliveira M et al (2009) Signature nucleotide polymorphisms at positions 64 and 65 in reverse transcriptase favor the selection of the K65R resistance mutation in HIV-1 subtype C. J Infect Dis 200:1202–1206CrossRefPubMedGoogle Scholar
  41. Kagan RM, Lee TS, Ross L et al (2007) Molecular basis of antagonism between K70E and K65R tenofovir-associated mutations in HIV-1 reverse transcriptase. Antiviral Res 75:210–218CrossRefPubMedGoogle Scholar
  42. Kellam P, Boucher CA, Larder BA (1992) Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci 89:1934–1938CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kerr SG, Anderson KS (1997) Pre-steady-state kinetic characterization of wild type and 3′-azido-3′-deoxythymidine (AZT) resistant human immunodeficiency virus type 1 reverse transcriptase: implication of RNA directed DNA polymerization in the mechanism of AZT resistance. Biochemistry 36:14064–14070CrossRefPubMedGoogle Scholar
  44. Kohlstaedt LA, Wang J, Friedman JM et al (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790CrossRefPubMedGoogle Scholar
  45. Larder BA (1992) 3′-Azido-3′-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 36:2664–2669CrossRefPubMedPubMedCentralGoogle Scholar
  46. Larder BA, Kemp SD (1998) Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246:1155–1158CrossRefGoogle Scholar
  47. Marchand B, Gotte M (2003) Site-specific footprinting reveals differences in the translocation status of HIV-1 reverse transcriptase. Implications for polymerase translocation and drug resistance. J Biol Chem 278:35362–35372CrossRefPubMedGoogle Scholar
  48. Mas A, Parera M, Briones C et al (2000) Role of a dipeptide insertion between codons 69 and 70 of HIV-1 reverse transcriptase in the mechanism of AZT resistance. EMBO J 19:5752–5761CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matsumi S, Kosalaraksa P, Tsang H et al (2003) Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants. AIDS 17:1127–1137CrossRefPubMedGoogle Scholar
  50. Meyer PR, Matsuura SE, Mian AM et al (1998) A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43CrossRefGoogle Scholar
  51. Meyer PR, Lennerstrand J, Matsuura SE et al (2003) Effects of dipeptide insertions between codons 69 and 70 of human immunodeficiency virus type 1 reverse transcriptase on primer unblocking, deoxynucleoside triphosphate inhibition, and DNA chain elongation. J Virol 77:3871–3877CrossRefPubMedPubMedCentralGoogle Scholar
  52. Miller V, Ait-Khaled M, Stone C et al (2000) HIV-1 reverse transcriptase (RT) genotype and susceptibility to RT inhibitors during abacavir monotherapy and combination therapy. AIDS 14:163–171CrossRefPubMedGoogle Scholar
  53. Miranda LR, Gotte M, Liang F, Kuritzkes DR (2005) The L74V mutation in human immunodeficiency virus type 1 reverse transcriptase counteracts enhanced excision of zidovudine monophosphate associated with thymidine analog resistance mutations. Antimicrob Agents Chemother 49:2648–2656CrossRefPubMedPubMedCentralGoogle Scholar
  54. Molina JM, Clumeck N, Redant K et al (2013) Rilpivirine vs. efavirenz in HIV-1 patients with baseline viral load 100,000 copies/ml or less: week 48 phase III analysis. AIDS 27:889–897CrossRefPubMedGoogle Scholar
  55. Nikolenko GN, Delviks-Frankenberry KA, Pathak VK (2010) A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol 84:5238–5249CrossRefPubMedPubMedCentralGoogle Scholar
  56. Paredes R, Puertas MC, Bannister W et al (2011) A376S in the connection subdomain of HIV-1 reverse transcriptase confers increased risk of virological failure to nevirapine therapy. J Infect Dis 204:741–752CrossRefPubMedGoogle Scholar
  57. Parikh UM, Koontz DL, Chu CK et al (2005) In vitro activity of structurally diverse nucleoside analogs against human immunodeficiency virus type 1 with the K65R mutation in reverse transcriptase. Antimicrob Agents Chemother 49:1139–1144CrossRefPubMedPubMedCentralGoogle Scholar
  58. Parikh UM, Bacheler L, Koontz D, Mellors JW (2006) The K65R mutation in HIV-1 reverse transcriptase exhibits bi-directional phenotypic antagonism with thymidine analog mutations. J Virol 80:4971–4977CrossRefPubMedPubMedCentralGoogle Scholar
  59. Parikh UM, Zelina S, Sluis-Cremer N, Mellors JW (2007) Molecular mechanisms of bi-directional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS 21:1405–1414CrossRefPubMedGoogle Scholar
  60. Radzio J, Sluis-Cremer N (2011) Subunit-specific mutational analysis of residue N348 in HIV-1 reverse transcriptase. Retrovirology 8:69CrossRefPubMedPubMedCentralGoogle Scholar
  61. Radzio J, Yap SH, Tachedjian G, Sluis-Cremer N (2010) N348I in reverse transcriptase provides a genetic pathway for HIV-1 to select thymidine analogue mutations and mutations antagonistic to thymidine analogue mutations. AIDS 24:659–667CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ray AS, Murakami E, Basavapathruni A et al (2003) Probing the molecular mechanisms of AZT drug resistance mediated by HIV-1 reverse transcriptase using a transient kinetic analysis. Biochemistry 42:8831–8841CrossRefPubMedGoogle Scholar
  63. Reardon JE (1992) Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry 31:4473–4479CrossRefPubMedGoogle Scholar
  64. Ren J, Nichols C, Bird L et al (2001) Structural mechanisms of drug resistance for mutations at codons 181 and 188 in HIV-1 reverse transcriptase and the improved resilience of second generation non-nucleoside inhibitors. J Mol Biol 312:795–805CrossRefPubMedGoogle Scholar
  65. Rimsky L, Van Eygen V, Hoogstoel A et al (2013) 96-week resistance analyses of rilpivirine in treatment-naive, HIV-1-infected adults from the ECHO and THRIVE Phase III trials. Antivir Ther 18(8):967–977CrossRefPubMedGoogle Scholar
  66. Ross L, Scarsella A, Raffanti S et al (2001) NZT40012 Study Team. Thymidine analog and multinucleoside resistance mutations are associated with decreased phenotypic susceptibility to stavudine in HIV type 1 isolated from zidovudine-naive patients experiencing viremia on stavudine-containing regimens. AIDS Res Hum Retroviruses 17:1107–1115CrossRefPubMedGoogle Scholar
  67. Schinazi RF, Lloyd RM Jr, Nguyen MH et al (1993) Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob Agents Chemother 37:875–881CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schuckmann MM, Marchand B, Hachiya A et al (2010) The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine. J Biol Chem 285:38700–38709CrossRefPubMedPubMedCentralGoogle Scholar
  69. Selmi B, Boretto J, Sarfati SR et al (2001) Mechanism-based suppression of dideoxynucleotide resistance by K65R human immunodeficiency virus reverse transcriptase using an alpha-boranophosphate nucleoside analogue. J Biol Chem 276:48466–48472CrossRefPubMedGoogle Scholar
  70. Selmi B, Deval J, Boretto J, Canard B (2003) Nucleotide analogue binding, catalysis and primer unblocking in the mechanisms of HIV-1 reverse transcriptase-mediated resistance to nucleoside analogues. Antivir Ther 8:143–154PubMedGoogle Scholar
  71. Sluis-Cremer N, Arion D, Parniak MA (2000a) Molecular mechanisms of HIV-1 resistance to nucleoside reverse transcriptase inhibitors (NRTIs). Cell Mol Life Sci 57:1408–1422CrossRefPubMedGoogle Scholar
  72. Sluis-Cremer N, Arion D, Kaushik N et al (2000b) Mutational analysis of Lys65 of HIV-1 reverse transcriptase. Biochem J 348:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sluis-Cremer N, Temiz NA, Bahar I (2004) Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res 2:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sluis-Cremer N, Arion D, Parikh U et al (2005) The 3′-azido group is not the primary determinant of 3′-azido-3′-deoxythymidine (AZT) responsible for the excision phenotype of AZT-resistant HIV-1. J Biol Chem 280:29047–29052CrossRefPubMedGoogle Scholar
  75. Sluis-Cremer N, Sheen CW, Zelina S et al (2007) Molecular mechanism by which the K70E mutation in human immunodeficiency virus type 1 reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 51:48–53CrossRefPubMedGoogle Scholar
  76. Sluis-Cremer N, Moore K, Radzio J et al (2010) N348I in HIV-1 reverse transcriptase decreases susceptibility to tenofovir and etravirine in combination with other resistance mutations. AIDS 24:317–319CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sluis-Cremer N, Huber K, Brumme C, et al (2013) The E138A mutation in HIV-1 reverse transcriptase is more common in Subtype C than B and decreases susceptibility to NNRTIs. In: 20th conference on retroviruses and opportunistic infections (CROI), Altanta, 3–6 Mar 2013Google Scholar
  78. Sunpath H, Wu B, Gordon M et al (2012) High rate of K65R for antiretroviral therapy-naive patients with subtype C HIV infection failing a tenofovir-containing first-line regimen. AIDS 26:1679–1684CrossRefPubMedPubMedCentralGoogle Scholar
  79. Theys K, Vercauteren J, Snoeck J et al (2013) HIV-1 subtype is an independent predictor of reverse transcriptase mutation K65R in HIV-1 patients treated with combination antiretroviral therapy including tenofovir. Antimicrob Agents Chemother 57:1053–1056CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ueno T, Shirasaka T, Mitsuya H (1995) Enzymatic characterization of human immunodeficiency virus type 1 reverse transcriptase resistant to multiple 2′,3′-dideoxynucleoside 5′-triphosphates. J Biol Chem 270:23605–23611CrossRefPubMedGoogle Scholar
  81. van’t Klooster G, Hoeben E, Borghys H et al (2010) Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother 54:2042–2050CrossRefGoogle Scholar
  82. Vingerhoets J, Tambuyzer L, Azijn H et al (2010) Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled Phase III clinical studies. AIDS 24:503–514CrossRefPubMedGoogle Scholar
  83. von Wyl V, Ehteshami M, Symons J et al (2010) Epidemiological and biological evidence for a compensatory effect of connection domain mutation N348I on M184V in HIV-1 reverse transcriptase. J Infect Dis 201:1054–1062CrossRefGoogle Scholar
  84. Wang J, Smerdon SJ, Jager J et al (1994) Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci 91:7242–7246CrossRefPubMedPubMedCentralGoogle Scholar
  85. Whitcomb JM, Parkin NT, Chappey C et al (2003) Broad nucleoside reverse-transcriptase inhibitor cross-resistance in human immunodeficiency virus type 1 clinical isolates. J Infect Dis 188:992–1000CrossRefPubMedGoogle Scholar
  86. Winters MA, Merigan TC (2005) Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob Agents Chemother 49:2575–2582CrossRefPubMedPubMedCentralGoogle Scholar
  87. Winters MA, Shafer RW, Jellinger RA et al (1994) Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility changes in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. Antimicrob Agents Chemother 41:757–762Google Scholar
  88. Winters MA, Shafer RW, Jellinger RA et al (1997) Human immunodeficiency virus type 1 reverse transcriptase genotype and drug susceptibility changes in infected individuals receiving dideoxyinosine monotherapy for 1 to 2 years. Antimicrob Agents Chemother 41:757–762PubMedPubMedCentralGoogle Scholar
  89. Xu HT, Asahchop EL, Oliveira M et al (2011) Compensation by the E138K mutation in HIV-1 reverse transcriptase for deficits in viral replication capacity and enzyme processivity associated with the M184I/V mutations. J Virol 85:11300–11308CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yap SH, Sheen CW, Fahey J et al (2007) N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance. PLoS Med 4(12):e335CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zelina S, Sheen CW, Radzio J et al (2008) Mechanisms by which the G333D mutation in human immunodeficiency virus type 1 Reverse transcriptase facilitates dual resistance to zidovudine and lamivudine. Antimicrob Agents Chemother 52:157–163CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cell BiologyRockefeller UniversityNew YorkUSA
  2. 2.Department of Medicine, Division of Infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations