Drug Resistance in Leishmania

  • Danielle Légaré
  • Marc OuelletteEmail author
Reference work entry


Protozoan parasites of the genus Leishmania cause a wide range of diseases affecting 12 million people worldwide with 1.5–2 million new cases each year. With no vaccine available yet, the control of these parasites relies solely on chemotherapy. Low-cost antimony-derived compounds remain the primary antileishmanial treatment in most developing countries. Increasing drug resistance towards these molecules has forced the use of alternative therapies in highly endemic areas including amphotericin B, paromomycin, and miltefosine. This chapter is presenting our current understanding of the mode of action and underlying resistance mechanisms of the few therapeutic drugs used against Leishmania.


Leishmania Drug resistance Pentavalent antimonials Amphotericin B Miltefosine Paromomycin 



Amphotericin B


Cutaneous leishmaniasis


Diffuse cutaneous leishmaniasis




Mucocutaneous leishmaniasis




Post-kala-azar dermal leishmaniasis




Sodium antimony gluconate


Trivalent antimonials


Pentavalent antimonials


Stable isotope labeling by amino acids in cell culture




Visceral leishmaniasis



The authors are grateful to the members of the laboratory at the Centre de Recherche en Infectiologie du CHU de Québec for their dedication, professionalism, and critical reading of the manuscript. The authors owe an apology to their colleagues in the field of leishmaniasis and even wider area of drug resistance whose work could not be properly acknowledged due to space limitations. This work was funded by a CIHR grant to M.O. M.O. holds the Canada Research Chair in Antimicrobial Resistance.


  1. Ait-Oudhia K, Gazanion E, Vergnes B, Oury B, Sereno D (2011) Leishmania antimony resistance: what we know what we can learn from the field. Parasitol Res 109:1225–1232PubMedCrossRefGoogle Scholar
  2. Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP, Gradoni L, Ter Horst R, Lopez-Velez R, Moreno J (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359, table of contentsPubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671PubMedPubMedCentralCrossRefGoogle Scholar
  4. Antinori S, Cascio A, Parravicini C, Bianchi R, Corbellino M (2008) Leishmaniasis among organ transplant recipients. Lancet Infect Dis 8:191–199PubMedCrossRefGoogle Scholar
  5. Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL, Opperdoes FR, Hol WG, Gelb MH (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 96:4273–4278PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bentwich Z (2003) Concurrent infections that rise the HIV viral load. J HIV Ther 8:72–75PubMedGoogle Scholar
  7. Bernier R, Turco SJ, Olivier M, Tremblay M (1995) Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol 69:7282–7285PubMedPubMedCentralGoogle Scholar
  8. Boite MC, Mauricio IL, Miles MA, Cupolillo E (2012) New insights on taxonomy, phylogeny and population genetics of Leishmania (Viannia) parasites based on multilocus sequence analysis. PLoS Negl Trop Dis 6:e1888PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bose Dasgupta S, Ganguly A, Roy A, Mukherjee T, Majumder HK (2008) A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance of Leishmania. Mol Biochem Parasitol 158:176–188CrossRefGoogle Scholar
  10. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M (2003) Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47:3073–3079PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6:928–934PubMedCrossRefGoogle Scholar
  13. Bucheton B, Abel L, El-Safi S, Kheir MM, Pavek S, Lemainque A, Dessein AJ (2003) A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 73:1052–1060PubMedPubMedCentralCrossRefGoogle Scholar
  14. Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, Castanys S (2007) A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 64:1141–1153PubMedCrossRefGoogle Scholar
  15. Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S (2008) Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52:3573–3579PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R (2011) Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One 6:e26660PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cockburn R, Newton PN, Agyarko EK, Akunyili D, White NJ (2005) The global threat of counterfeit drugs: why industry and governments must communicate the dangers. PLoS Med 2:e100PubMedPubMedCentralCrossRefGoogle Scholar
  18. Coelho AC, Boisvert S, Mukherjee A, Leprohon P, Corbeil J, Ouellette M (2012) Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 6:e1512PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corona P, Gibellini F, Cavalli A, Saxena P, Carta A, Loriga M, Luciani R, Paglietti G, Guerrieri D, Nerini E, Gupta S, Hannaert V, Michels PA, Ferrari S, Costi PM (2012) Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. J Med Chem 55:8318–8329PubMedCrossRefGoogle Scholar
  20. Costa CH, Peters NC, Maruyama SR, de Brito EC, Santos IK (2011) Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl Trop Dis 5:e943PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cruz I, Morales MA, Noguer I, Rodriguez A, Alvar J (2002) Leishmania in discarded syringes from intravenous drug users. Lancet 359:1124–1125PubMedCrossRefGoogle Scholar
  22. Delobel P, Launois P, Djossou F, Sainte-Marie D, Pradinaud R (2003) American cutaneous leishmaniasis, lepromatous leprosy, and pulmonary tuberculosis coinfection with downregulation of the T-helper 1 cell response. Clin Infect Dis 37:628–633PubMedCrossRefGoogle Scholar
  23. Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP (1996) An ATP-dependent as(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci U S A 93:2192–2197PubMedPubMedCentralCrossRefGoogle Scholar
  24. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schonian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21:2143–2156PubMedPubMedCentralCrossRefGoogle Scholar
  25. Escobar P, Matu S, Marques C, Croft SL (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop 81:151–157PubMedCrossRefGoogle Scholar
  26. Farouk S, Salih MA, Musa AM, Blackwell JM, Miller EN, Khalil EA, Elhassan AM, Ibrahim ME, Mohamed HS (2010) Interleukin 10 gene polymorphisms and development of post kala-azar dermal leishmaniasis in a selected Sudanese population. Public Health Genomics 13:362–367PubMedCrossRefGoogle Scholar
  27. Fernandes Rodrigues JC, Concepcion JL, Rodrigues C, Caldera A, Urbina JA, de Souza W (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fernandez MM, Malchiodi EL, Algranati ID (2011) Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells. Antimicrob Agents Chemother 55:86–93PubMedCrossRefGoogle Scholar
  29. Fish WR, Marr JJ, Berens RL, Looker DL, Nelson DJ, LaFon SW, Balber AE (1985) Inosine analogs as chemotherapeutic agents for African trypanosomes: metabolism in trypanosomes and efficacy in tissue culture. Antimicrob Agents Chemother 27:33–36PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017PubMedCrossRefGoogle Scholar
  31. Grogl M, Daugirda JL, Hoover DL, Magill AJ, Berman JD (1993) Survivability and infectivity of viscerotropic Leishmania tropica from operation desert storm participants in human blood products maintained under blood bank conditions. Am J Trop Med Hyg 49:308–315PubMedCrossRefGoogle Scholar
  32. Gupta A, Nagar M, Mishra SS, Lahariya C (2013) Visceral leishmaniasis (Kala Azar) elimination from Indian Sub-continent by 2015. Int J Trop Dis Health 3:73–81CrossRefGoogle Scholar
  33. Ilari A, Baiocco P, Messori L, Fiorillo A, Boffi A, Gramiccia M, Di Muccio T, Colotti G (2012) A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 42:803–811PubMedCrossRefGoogle Scholar
  34. Imbert L, Ramos RG, Libong D, Abreu S, Loiseau PM, Chaminade P (2012) Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis. Anal Bioanal Chem 402:1169–1182PubMedCrossRefGoogle Scholar
  35. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615PubMedCrossRefGoogle Scholar
  37. Kelly RJ, Robey RW, Chen CC, Draper D, Luchenko V, Barnett D, Oldham RK, Caluag Z, Frye AR, Steinberg SM, Fojo T, Bates SE (2012) A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist 17:512PubMedPubMedCentralCrossRefGoogle Scholar
  38. Khalili G, Dobakhti F, Mahmoudzadeh-Niknam H, Khaze V, Partovi F (2011) Immunotherapy with imiquimod increases the efficacy of glucantime therapy of Leishmania major infection. Iran J Immunol 8:45–51PubMedGoogle Scholar
  39. King CH, Bertino AM (2008) Asymmetries of poverty: why global burden of disease valuations underestimate the burden of neglected tropical diseases. PLoS Negl Trop Dis 2:e209PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kobets T, Grekov I, Lipoldova M (2012) Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 19:1443–1474PubMedCrossRefGoogle Scholar
  41. Kumar D, Kulshrestha A, Singh R, Salotra P (2009) In vitro susceptibility of field isolates of Leishmania donovani to Miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother 53:835–838PubMedCrossRefGoogle Scholar
  42. Lachaud L, Bourgeois N, Plourde M, Leprohon P, Bastien P, Ouellette M (2009) Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and leishmania infantum. Clin Infect Dis 48:e16–e22PubMedCrossRefGoogle Scholar
  43. Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M (2001) The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 276:26301–26307PubMedCrossRefGoogle Scholar
  44. Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162PubMedCrossRefGoogle Scholar
  45. Loiseau PM, Cojean S, Schrevel J (2011) Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 18:115–119PubMedPubMedCentralCrossRefGoogle Scholar
  46. Luque-Ortega JR, Rivas L (2007) Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1327–1332PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mackey TK, Liang BA (2011) The global counterfeit drug trade: patient safety and public health risks. J Pharm Sci 100:4571–4579PubMedCrossRefGoogle Scholar
  48. Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468PubMedPubMedCentralCrossRefGoogle Scholar
  49. Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F (2013) A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother 57:3719–3730PubMedPubMedCentralCrossRefGoogle Scholar
  50. Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57:1690–1699PubMedCrossRefGoogle Scholar
  51. Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42:352–357PubMedPubMedCentralGoogle Scholar
  52. Mittal MK, Rai S, Ashutosh R, Gupta S, Sundar S, Goyal N (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76:681–688PubMedGoogle Scholar
  53. Mock DJ, Hollenbaugh JA, Daddacha W, Overstreet MG, Lazarski CA, Fowell DJ, Kim B (2012) Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog 8:e1002635PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mohamed HS, Ibrahim ME, Miller EN, Peacock CS, Khalil EA, Cordell HJ, Howson JM, El Hassan AM, Bereir RE, Blackwell JM (2003) Genetic susceptibility to visceral leishmaniasis in the Sudan: linkage and association with IL4 and IFNGR1. Genes Immun 4:351–355PubMedCrossRefGoogle Scholar
  55. Mohamed HS, Ibrahim ME, Miller EN, White JK, Cordell HJ, Howson JM, Peacock CS, Khalil EA, El Hassan AM, Blackwell JM (2004) SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in the Sudan. Eur J Hum Genet 12:66–74PubMedCrossRefGoogle Scholar
  56. Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, Ouellette M, Madhubala R (2007) Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother 59:204–211PubMedCrossRefGoogle Scholar
  57. Mukherjee A, Boisvert S, Monte-Neto RL, Coelho AC, Raymond F, Mukhopadhyay R, Corbeil J, Ouellette M (2013a) Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol 88:189–202PubMedCrossRefGoogle Scholar
  58. Mukherjee B, Mukhopadhyay R, Bannerjee B, Chowdhury S, Mukherjee S, Naskar K, Allam US, Chakravortty D, Sundar S, Dujardin JC, Roy S (2013b) Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A 110:E575–E582PubMedPubMedCentralCrossRefGoogle Scholar
  59. Orsini M, Canela JR, Disch J, Maciel F, Greco D, Toledo A Jr, Rabello A (2012) High frequency of asymptomatic Leishmania spp. Infection among HIV-infected patients living in endemic areas for visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg 106:283–288PubMedCrossRefGoogle Scholar
  60. Palatnik-de-Sousa CB (2008) Vaccines for leishmaniasis in the fore coming 25 years. Vaccine 26:1709–1724PubMedCrossRefGoogle Scholar
  61. Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, Ravelo AG, Castanys S, Gamarro F (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother 45:2468–2474PubMedPubMedCentralCrossRefGoogle Scholar
  62. Perez-Victoria FJ, Castanys S, Gamarro F (2003) Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403PubMedPubMedCentralCrossRefGoogle Scholar
  63. Perez-Victoria FJ, Sanchez-Canete MP, Castanys S, Gamarro F (2006a) Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem 281:23766–23775PubMedCrossRefGoogle Scholar
  64. Perez-Victoria FJ, Sanchez-Canete MP, Seifert K, Croft SL, Sundar S, Castanys S, Gamarro F (2006b) Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist Updat 9:26–39PubMedCrossRefGoogle Scholar
  65. Perez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martinez-Garcia M, Lopez-Martin C, Campillo M, Castanys S, Gamarro F (2011) Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother 55:3838–3844PubMedPubMedCentralCrossRefGoogle Scholar
  66. Perry MR, Wyllie S, Prajapati VK, Feldmann J, Sundar S, Boelaert M, Fairlamb AH (2011) Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis 5:e1227PubMedPubMedCentralCrossRefGoogle Scholar
  67. Pradines B (2013) P-glycoprotein-like transporters in Leishmania: a search for reversal agents. In: Ponte-Sucre A, Diaz E, Padròn-Nieves M. Ponte-Sucre A (ed) Drug resistance in Leishmania parasites. Springer, ViennaGoogle Scholar
  68. Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, Pandey K, Ravidas V, Kumar M, De T, Singh D, Das P (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56:1031–1041PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rajasekaran R, Chen YP (2012) Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. J Mol Model 18:4089–4100PubMedCrossRefGoogle Scholar
  70. Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen BE (1996) Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol 152:65–75PubMedCrossRefGoogle Scholar
  71. Rathnayake D, Ranawake RR, Sirimanna G, Siriwardhane Y, Karunaweera N, De Silva R (2010) Co-infection of mucosal leishmaniasis and extra pulmonary tuberculosis in a patient with inherent immune deficiency. Int J Dermatol 49:549–551PubMedCrossRefGoogle Scholar
  72. Requena JM (2011) Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci 16:2069–2085CrossRefGoogle Scholar
  73. Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC (2013) Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 56:1530–1538PubMedCrossRefGoogle Scholar
  74. Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE (2008) Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 75:1302–1312PubMedCrossRefGoogle Scholar
  75. el-Safi SH, Hamid N, Omer A, Abdel-Haleem A, Hammad A, Kareem HG, Boelaert M (2004) Infection rates with Leishmania donovani and Mycobacterium tuberculosis in a village in eastern Sudan. Trop Med Int Health 9:1305–1311PubMedCrossRefGoogle Scholar
  76. Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, Mallick S, Rahman M, Kar S, Goswami R, Guha SK, Pramanik N, Saha B, Ali N (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179:5592–5603PubMedCrossRefGoogle Scholar
  77. Salih MA, Ibrahim ME, Blackwell JM, Miller EN, Khalil EA, ElHassan AM, Musa AM, Mohamed HS (2007) IFNG and IFNGR1 gene polymorphisms and susceptibility to post-kala-azar dermal leishmaniasis in Sudan. Genes Immun 8:75–78PubMedCrossRefGoogle Scholar
  78. Santos LO, Vitorio BS, Branquinha MH, Pedroso e Silva CM, Santos AL, d'Avila-Levy CM (2013) Nelfinavir is effective in inhibiting the multiplication and aspartic peptidase activity of Leishmania species, including strains obtained from HIV-positive patients. J Antimicrob Chemother 68:348–353PubMedCrossRefGoogle Scholar
  79. Seifert K, Perez-Victoria FJ, Stettler M, Sanchez-Canete MP, Castanys S, Gamarro F, Croft SL (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30:229–235PubMedCrossRefGoogle Scholar
  80. Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D (2001) Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976PubMedCrossRefGoogle Scholar
  81. Singh N (2006) Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res 123:411–422PubMedGoogle Scholar
  82. Singh N, Singh RT, Sundar S (2003) Novel mechanism of drug resistance in kala azar field isolates. J Infect Dis 188:600–607PubMedCrossRefGoogle Scholar
  83. Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P (2010) Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents 36:50–57PubMedCrossRefGoogle Scholar
  84. Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497PubMedCrossRefGoogle Scholar
  85. Srivastava P, Prajapati VK, Rai M, Sundar S (2011) Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol 49:3088–3091PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sun YL, Chen JJ, Kumar P, Chen K, Sodani K, Patel A, Chen YL, Chen SD, Jiang WQ, Chen ZS (2013) Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One 8:e55576PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sundar S, Chakravarty J (2013) Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother 14:53–63PubMedCrossRefGoogle Scholar
  88. Sundar S, Singh A, Rai M, Prajapati VK, Singh AK, Ostyn B, Boelaert M, Dujardin JC, Chakravarty J (2012) Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 55:543–550PubMedCrossRefGoogle Scholar
  89. Trejo WH, Bennett RE (1963) Streptomyces nodosus sp. n., the amphotericin-producing organism. J Bacteriol 85:436–439PubMedPubMedCentralGoogle Scholar
  90. Urbina JA, Cohen BE, Perozo E, Cornivelli L (1987) Spin-labeled amphotericin B: synthesis, characterization, biological and spectroscopic properties. Biochim Biophys Acta 897:467–473PubMedCrossRefGoogle Scholar
  91. Vanaerschot M, Decuypere S, Downing T, Imamura H, Stark O, De Doncker S, Roy S, Ostyn B, Maes L, Khanal B, Boelaert M, Schonian G, Berriman M, Chappuis F, Dujardin JC, Sundar S, Rijal S (2012) Genetic markers for SSG resistance in Leishmania donovani and SSG treatment failure in visceral leishmaniasis patients of the Indian subcontinent. J Infect Dis 206:752–755PubMedPubMedCentralCrossRefGoogle Scholar
  92. Venkatesan SK, Dubey VK (2012) Footprinting of inhibitor interactions of in silico identified inhibitors of trypanothione reductase of Leishmania parasite. Sci World J 2012:963658CrossRefGoogle Scholar
  93. Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6:88–101PubMedCrossRefGoogle Scholar
  94. Vieira M, Rohloff P, Luo S, Cunha-e-Silva NL, de Souza W, Docampo R (2005) Role for a P-type H + −ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 392:467–474PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang J, Vanley C, Miyamoto E, Turner JA, Peng SK (1999) Coinfection of visceral leishmaniasis and Mycobacterium in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 123:835–837PubMedGoogle Scholar
  96. Wasan KM, Wasan EK, Gershkovich P, Zhu X, Tidwell RR, Werbovetz KA, Clement JG, Thornton SJ (2009) Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J Infect Dis 200:357–360PubMedCrossRefGoogle Scholar
  97. Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR, Clement JG, Thornton SJ, Wasan KM (2010) A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl Trop Dis 4:e913PubMedPubMedCentralCrossRefGoogle Scholar
  98. WHO (2010) Control of the leishmaniases. World Health Organ Tech Rep Ser: xii–xiii, pp 1–186Google Scholar
  99. Wolday D, Akuffo H, Demissie A, Britton S (1999) Role of Leishmania donovani and its lipophosphoglycan in CD4+ T-cell activation-induced human immunodeficiency virus replication. Infect Immun 67:5258–5264PubMedPubMedCentralGoogle Scholar
  100. Wyllie S, Patterson S, Stojanovski L, Simeons FR, Norval S, Kime R, Read KD, Fairlamb AH (2012) The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci Transl Med 4(119):119re111CrossRefGoogle Scholar
  101. Yardley V, Gamarro F, Croft SL (2010) Antileishmanial and antitrypanosomal activities of the 8-aminoquinoline tafenoquine. Antimicrob Agents Chemother 54:5356–5358PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zijlstra EE, el-Hassan AM, Ismael A (1995) Endemic kala-azar in eastern Sudan: post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 52:299–305PubMedCrossRefGoogle Scholar
  103. Zijlstra EE, Khalil EA, Kager PA, El-Hassan AM (2000) Post-kala-azar dermal leishmaniasis in the Sudan: clinical presentation and differential diagnosis. Br J Dermatol 143:136–143PubMedCrossRefGoogle Scholar
  104. Zijlstra EE, Musa AM, Khalil EA, el-Hassan IM, el-Hassan AM (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3:87–98PubMedCrossRefGoogle Scholar
  105. Zucca M, Scutera S, Savoia D (2013) New chemotherapeutic strategies against malaria, leishmaniasis and trypanosomiases. Curr Med Chem 20:502–526PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec, Pavillon CHUL and Département de Microbiologie-Infectiologie et Immunologie, Faculté de MédecineUniversité LavalQCCanada

Personalised recommendations