Skip to main content

The Biochemistry of Quinoline Antimalarial Drug Resistance

  • Reference work entry
  • First Online:
  • 1767 Accesses

Abstract

Mutations in the Plasmodium falciparum chloroquine-resistance transporter (PfCRT) have been shown to be central to the molecular mechanism of quinoline antimalarial drug resistance. However, additional facets to resistance biochemistry are emerging, and it is now clear that multiple quinoline drug resistance phenotypes exist in different regions of the globe. Different public health policies and drug use histories across the globe, along with natural genetic drift, have created this diversity, such that there are now dozens of distinct chloroquine-resistant (CQR) strains of P. falciparum. Some of these can be described in detail, but information is incomplete. This leads to some degree of continued uncertainty on how best to proceed in controlling malaria in some regions. This issue is even more critical for controlling chloroquine-resistant P. vivax, about which even less is known. This review summarizes key features of quinoline antimalarial drug resistance in P. falciparum malaria and suggests concepts relevant for “staying ahead of the resistance curve.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ACT:

Artemisinin combination therapy

ATP:

Adenosine triphosphate

CQ:

Chloroquine

CQR:

CQ resistant (resistance)

CQS:

CQ sensitive

DV:

Digestive vacuole

FPIX:

Ferriprotoporphyrin IX

Hb:

Hemoglobin

HF:

Halofantrine

Hz:

Hemozoin

iRBC:

Red blood cell infected with P. falciparum

ISOV:

Inside–out yeast plasma membrane vesicle

MDR:

Multidrug resistant (resistance)

MQ:

Mefloquine

pfcrt/PfCRT:

Plasmodium falciparum chloroquine-resistance transporter (gene/PROTEIN)

PfMDR1:

P. falciparum multidrug resistance protein 1

PfNHE:

P. falciparum Na+/H+ exchanger

pvs:

Parasitophorous vacuolar space

QD:

Quinidine

QN:

Quinine

QNR:

Quinine resistance

QTL:

Quantitative trait loci

RBC:

Red blood cell

VPL:

Verapamil

References

  • Alumasa JA, Gorka A, Casabianca L, Comstock E, Wolf C, deDios A, Roepe PD (2010) The hydroxyl functionality is vital to quinine antimalarial activity. J Inorg Biochem 105:467–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A 99:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes DA, Foote SJ, Galatis D, Kemp DJ, Cowman AF (1992) Selection for high-level chloroquine resistance results in deamplification of the pfmdr1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. EMBO J 11:3067–3075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baro NK, Pooput C, Roepe PD (2011) Analysis of chloroquine resistance transporter (CRT) isoforms and orthologues in S. cerevisiae yeast. Biochemistry 50:6701–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baro NK, Callaghan PS, Roepe PD (2013) Function of resistance conferring Plasmodium falciparum chloroquine resistance transporter isoforms. Biochemistry 52:4242–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell A (2005) Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 253:171–184

    Article  CAS  PubMed  Google Scholar 

  • Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson E, Roepe PD (2004a) Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 48:1807–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett TN, Kosar AD, Ursos LMB, Dzekunov S, Sidhu ABS, Fidock DA, Roepe PD (2004b) Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol 133:99–114

    Article  CAS  PubMed  Google Scholar 

  • Bennett TN, Patel J, Ferdig MT, Roepe PD (2007) Altered Plasmodium falciparum Na+/H+ exchange activity is correlated with quinine resistance. Mol Biochem Parasitol 153:48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogitsch BJ, Carter CE, Oeltmann TN (2005) Human parasitology. Elsevier Press, London

    Google Scholar 

  • Bohle DS, Dodd EL, Stephens PW (2012) Structure of malaria pigment and related propanoate-linked metalloporphyrin dimers. Chem Biodivers 9:1891–1902

    Article  CAS  PubMed  Google Scholar 

  • Bray PG, Howells RE, Ritchie GY, Ward SA (1992) Rapid chloroquine efflux phenotype in both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. A correlation of chloroquine sensitivity with energy-dependent drug accumulation. Biochem Pharmacol 44:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Bray PG, Janneh O, Raynes KJ, Mungthin M, Ginsburg H, Ward SA (1999) Cellular uptake of chloroquine is dependent on binding to FPIX and is independent of NHE activity in Plasmodium falciparum. J Cell Biol 145:363–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burckhalter JH, Tendick FH, Jones EM, Jones PA, Holcomb WF, Rawlins AL (1948) Aminoalkylphenols as antimalarials. II. (Heterocyclic-amino)-α-amino-o-cresols. The synthesis of camoquin. J Am Chem Soc 70:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Cabrera M, Paguio MF, Xie C, Roepe PD (2009) Reduced digestive vacuolar accumulation of chloroquine is not linked to resistance to chloroquine toxicity. Biochemistry 48:11152–11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casabianca LB, An D, Natarajan JK, Alumasa JN, Roepe PD, Wolf C, de Dios AC (2008) Quinine and chloroquine differentially perturb heme monomer-dimer equilibrium. Inorg Chem 47:6077–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaijarkoenkul W, Ward SA, Mungthin M, Owen A, Bray PG, Na-Bangchang K (2011) Sequence and gene expression of chloroquine resistance transporter (pfcrt) in the association of in vitro drugs resistance of Plasmodium falciparum. Malar J 10:42–51

    Article  Google Scholar 

  • Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, Al Saai S, Phyo AP, Moo CL, Lwin KM, McGready R, Ashley E, Imwong M, Stepniewska K, Yi P, Dondorp AM, Mayxay M, Newton PN, White NJ, Nosten F, Ferdig MT, Anderson TJ (2012) A major genome region underlying artemisinin resistance in malaria. Science 336:79–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Kyle DE, Pasay C, Fowler EV, Baker J, Peters JM, Cheng Q (2003) Pfcrt Allelic types with two novel amino – acid mutations in chloroquine- resistant Plasmodium falciparum isolates from the Philippines. Antimicrob Agents Chemother 47:3500–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper RA, Ferdig MT, X-z S, Ursos LMB, Mu J, Nomura T, Fujioka H, Fidock DA, Roepe PD, Wellems TE (2002) Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT produce chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol 61:1–8

    Article  Google Scholar 

  • Cooper RA, Papakrivos J, Lane KD, Fujioka H, Lingelbach K, Wellems TE (2005) PfCG2, A Plasmodium falciparum protein peripherally associated with the parasitophorous vacuolar membrane, is expressed in the period of maximum hemoglobin uptake and digestion by trophozoites. Mol Biochem Parasitol 144:167–176

    Article  CAS  PubMed  Google Scholar 

  • Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci U S A 91:1143–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerig C, Endicott J, Chakrabarti D (2002) Cyclin-dependent kinase homologues of Plasmodium falciparum. Int J Parasitol 32:1575–1585

    Article  CAS  PubMed  Google Scholar 

  • Dorsey G, Kamya MR, Singh A, Rosenthal PJ (2001) Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr-1 genes and clinical response to Chloroquine in Kampala, Uganda. J Infect Dis 183:1417–1420

    Article  CAS  PubMed  Google Scholar 

  • Douglas NM, John GK, von Seidlein L, Anstey NM, Price RN (2012) Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv Parasitol 80:271–300

    Article  PubMed  Google Scholar 

  • Durrand V, Berry A, Sem R, Glaziou P, Beaudou J, Fandeur, T (2004) Variations in the sequence and expression of the plasmodium falciparum chloroquine resistance transporter (PfCRT) and their relationship to chloroquine resistance in vitro. Mol Biochem Parasitol 136:273–285

    Article  CAS  PubMed  Google Scholar 

  • Echeverry D, Holmgren G, Murillo C, Higuita J, Bjorkman A, Gil J, Osorio L (2007) Short report: Polymorphisms in the PfCRT and pfmdr1 genes of Plasmodium falciparum and in vitro susceptibility to amodiaquine and desethylamodiaquine. Am J Trop Med Hyg 77:1034–1038

    CAS  PubMed  Google Scholar 

  • Ecker A, Lehane AM, Clain J, Fidock DA (2012) PfCRT and its role in antimalarial drug resistance. Trends Parasitol 28:504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan TJ, Chen JY, de Villiers KA, Mabotha TE, Naidoo KJ, Ncokazi KK, Langford SJ, McNaughton D, Pandiancherii S, Wood BR (2006) Hemozoin (β-hematin) biomineralization occurs by self-assembly near the lipid/water interface. FEBS Lett 580:5105–5110

    Article  CAS  PubMed  Google Scholar 

  • Elliot DA, McIntosh MT, Hosgood HD III, Chen S, Zhang G, Baevova P, Joiner KA (2008) Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 105:2463–2468

    Article  Google Scholar 

  • Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE (2004) Dissecting the loci of Low-level quinine resistance in malaria parasites. Mol Microbiol 52:985–997

    Article  CAS  PubMed  Google Scholar 

  • Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SA, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE (2000a) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidock DA, Nomura T, Cooper RA, Su X, Talley AK, Wellems TE (2000b) Allelic modifications of the cg2 and cg1 genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol Biochem Parasitol 110:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fitch CD (1969) Chloroquine resistance in malaria: a deficiency of chloroquine binding. Proc Natl Acad Sci U S A 64:1181–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch CD, Chevli R, Kanjananggulpan P, Dutta P, Chevli K, Chou AC (1983) Intracellular ferriprotoporphyrin IX is a lytic agent. Blood 62:1165–1168

    CAS  PubMed  Google Scholar 

  • Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Therapeutics 79:55–87

    Article  CAS  Google Scholar 

  • Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine – resistant isolates of P. falciparum. Cell 57:921–930

    Article  CAS  PubMed  Google Scholar 

  • Foote SJ, Kyle DE, Martin RK, Oduola AMJ, Forsyth K, Kemp DJ, Cowman AF (1990) Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345:255–258

    Article  CAS  PubMed  Google Scholar 

  • Gamboa de Domínguez ND, Rosenthal PJ (1996) Cysteine proteinase inhibitors block early steps in hemoglobin degradation by cultured malaria parasites. Blood 87:4448–4454

    PubMed  Google Scholar 

  • Gaviria D, Paguio M, Turnbull LB, Siriwardana A, Ferdig MT, Sinai AP, Roepe PD (2013) A process similar to autophagy is associated with cytocidal chloroquine resistance in Plasmodium falciparum. PLoS One 8(11):e79059

    Article  PubMed  PubMed Central  Google Scholar 

  • Geary TG, Jensen JB, Ginsburg H (1986) Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum. Biochem Pharmacol 35:3805–3812

    Article  CAS  PubMed  Google Scholar 

  • Gligorijevic B, Bennett T, McAllister R, Urbach JS, Roepe PD (2006) Spinning disk confocal microscopy of live, intraerythrocytic malarial parasites. 2. Altered vacuolar volume regulation in drug resistant malaria. Biochemistry 45:12411–12423

    Article  CAS  PubMed  Google Scholar 

  • Gorka A, deDios AC, Roepe PD (2013a) Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 56:5231–5246

    Article  CAS  PubMed  Google Scholar 

  • Gorka AP, Alumasa JN, Sherlach KS, Jacobs LM, Nickley KB, Brower JP, de Dios AC, Roepe PD (2013b) Cytostatic versus cytocidal activities of chloroquine analogues and inhibition of hemozoin crystal growth. Antimicrob Agents Chemother 57:356–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorka AP, Jacobs LM, Roepe PD (2013c) Cytostatic versus cytocidal profiling of quinoline drug combinations via modified fixed-ratio isobologram analysis. Malar J 12(1):332–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Halbert J, Ayong L, Equinet L, Le Roch K, Hardy M, Goldring D, Reininger L, Waters N, Chakrabarti D, Doerig C (2010) A Plasmodium falciparum transcriptional cyclin-dependent kinase-related kinase with a crucial role in parasite proliferation associates with histone deacetylase activity. Eukaryot Cell 9:952–959. doi:10.1128/EC.00005-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley SR, Bray PG, Mungthin M, Atkinson JD, O’Neill PM, Ward SA (1998) Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro. Antimicrob Agents Chemother 42:682–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson KE, Klonis N, Ferguson DJ, Adisa A, Dogovski C, Tilley L (2004) Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol Microbiol 54:109–122

    Article  CAS  PubMed  Google Scholar 

  • Kauer K, Jain M, Reddy RP, Jain R (2010) Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 45:3245–3264

    Article  Google Scholar 

  • Krogstad DJ, Gluzman IY, Kyle DE, Oduola AM, Martin SK, Milhous WK, Schlesinger PH (1987) Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science 238:1283–1285

    Article  CAS  PubMed  Google Scholar 

  • Lekostaj JK, Natarajan JK, Paguio MF, Wolf C, Roepe PD (2008) Photoaffinity labeling of the Plasmodium falciparum chloroquine resistance transporter with a novel perfluorophenylazido chloroquine. Biochemistry 47:10394–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macomber PB, Spintz H (1967) Morphological effects of chloroquine on Plasmodium berghei in Mice. Nature 214:937–939

    Article  CAS  PubMed  Google Scholar 

  • Martin SK, Oduola AM, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235:899–901

    Article  CAS  PubMed  Google Scholar 

  • Martin RE, Marchetti RV, Cowan AI, Howitt SM, Bröer S, Kirk K (2009) Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science 325:1680–1682

    Article  CAS  PubMed  Google Scholar 

  • Naude B, Brzostowski JA, Kimmel AR, Wellems TE (2005) Dictyostelium discoideum expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild-type, Plasmodium falciparum transporter PfCRT. J Biol Chem 280:25596–25603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, Wootton JC, Wellems TE (2001) Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 183:1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment β-haematin. Nature 404:307–310

    Article  CAS  PubMed  Google Scholar 

  • Paguio MF, Cabrera M, Roepe PD (2009) Chloroquine transport in P. falciparum. 2. Analysis of PfCRT-mediated drug transport using proteoliposomes and a fluorescent chloroquine probe. Biochemistry 48:9482–9491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paguio MF, Bogle KL, Roepe PD (2011) Plasmodium falciparum resistance to cytocidal versus cytostatic effects of chloroquine. Mol Biochem Parasitol 178:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papakrivos J, Sá JM, Wellems TE (2012) Functional characterization of the Plasmodium falciparum chloroquine-resistance transporter (PfCRT) in transformed Dictyostelium discoideum vesicles. PLoS One 7:e39569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JJ, Thacker D, Tan JC, Pleeter P, Checkley L, Gonzales JM, Deng B, Roepe PD, Cooper RA, Ferdig MT (2010) Chloroquine susceptibility and reversibility in a Plasmodium falciparum genetic cross. Mol Microbiol 78:770–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyton DH (2012) Reversed chloroquine molecules as a strategy to overcome resistance in malaria. Curr Top Med Chem 12:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisciotta JM, Coppens I, Tripathi AK, Scholl PF, Shuman J, Bajad S, Shulaev V, Sullivan DJ Jr (2007) The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization. Biochem J 402:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pleeter P, Lekostaj JK, Roepe PD (2010) Purified Plasmodium falciparum multi-drug resistance protein (PfMDR 1) binds a high affinity chloroquine analogue. Mol Biochem Parasitol 173:158–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909

    Article  CAS  PubMed  Google Scholar 

  • Ritchie GY, Mungthin M, Green JE, Bray PG, Hawley SR, Ward SA (1996) In vitro selection of halofantrine resistance in Plasmodium falciparum is not associated with increased expression of Pgh1. Mol Biochem Parasitol 83:35–46

    Article  CAS  PubMed  Google Scholar 

  • Roepe PD (2009) Molecular and physiologic basis of quinoline drug resistance in Plasmodium falciparum malaria. Future Microbiol 4:441–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roepe PD (2011) PfCRT-mediated drug transport in malarial parasites. Biochemistry 50:163–171

    Article  CAS  PubMed  Google Scholar 

  • Roepe PD, Wei LY, Hoffman MM, Fritz F (1996) Altered drug translocation mediated by the MDR protein: direct, indirect, or both? J Bioenerg Biomembr 28:541–555

    Article  CAS  PubMed  Google Scholar 

  • Sá JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE (2009) Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci U S A 106:18883–18889

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez CP, Horrocks P, Lanzer M (1998) Is the putative chloroquine resistance mediator CG2 the Na+/H+ exchanger of Plasmodium falciparum? Cell 92:601–602

    Article  CAS  PubMed  Google Scholar 

  • Schlagenhauf P, Adamcova M, Regep L, Schaerer MT, Rhein HG (2010) The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar J 9:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanks GD (2012) Control and elimination of Plasmodium vivax. Adv Parasitol 80:301–341

    Article  PubMed  Google Scholar 

  • Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by PfCRT mutations. Science 298:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu AB, Valderramos SG, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57:913–926

    Article  CAS  PubMed  Google Scholar 

  • Sinai AP, Roepe PD (2012) Autophagy in Apicomplexa: a life sustaining death mechanism? Trends Parasitol 28:358–364. doi:10.1016/j.pt.2012.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agent Chemotherap 48:1803–1806

    Article  CAS  Google Scholar 

  • Su X-z, Kirkman LA, Fujioka H, Wellems TE (1997) Complex polymorphisms in an 330 kDa protein are linked to chloroquine – resistant P. falciparum in Southeast Asia and Africa. Cell 91:593–603

    Article  CAS  PubMed  Google Scholar 

  • Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE (1996) On the molecular mechanism of chloroquine’s antimalarial action. Proc Natl Acad Sci U S A 93:11865–11870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, Fukuda MM, Nosten F, Noedl H, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Socheat D, Ariey F, Phyo AP, Starzengruber P, Fuehrer HP, Swoboda P, Stepniewska K, Flegg J, Arze C, Cerqueira GC, Silva JC, Ricklefs SM, Porcella SF, Stephens RM, Adams M, Kenfic LJ, Campino S, Auburn S, Macinnis B, Kwiatkowski DP, Su X-z, White NJ, Ringwald P, Plowe CV (2013) Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A 110:240–245

    Article  CAS  PubMed  Google Scholar 

  • Vander Jagt DL, Hunsaker LA, Campos NM (1987) Comparison of proteases from chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Biochem Pharmacol 36:3285–3291

    Article  CAS  PubMed  Google Scholar 

  • Volkman SK, Sabeti PC, DeCaprio D, Neafesy DE, Schaffner SF, Milner DA, Daily JP, Sarr O, Ndiaye D, Ndir O, Mboup S, Duraisingh MT, Lukens A, Derr A, Stange-Thomann N, Waggoner S, Onofrio R, Ziaugra L, Mauceli E, Gnerre S, Jaffe DB, Zainoun J, Wiegand RC, Birren BW, Hartl DL, Galagan JE, Lander ES, Wirth DF (2007) A genome-wide map of diversity in Plasmodium falciparum. Nat Genet 39:113–119

    Article  CAS  PubMed  Google Scholar 

  • Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, Krogstad DJ (1990) Chloroquine resistance not linked to mdr – like genes in a Plasmodium falciparum cross. Nature 345:253–255

    Article  CAS  PubMed  Google Scholar 

  • Wellems TE, Wootton JC, Fujioka H, X-z S, Cooper R, Baruch D, Fidock DA (1998) P. falciparum CG2, linked to chloroquine resistance, does not resemble Na+/H+ exchangers. Cell 94:285–286

    Article  CAS  PubMed  Google Scholar 

  • Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF (1989) Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186

    Article  CAS  PubMed  Google Scholar 

  • Wooton J, Feng X, Ferdig M, Cooper R, Mu J, Baruch D, Magill A, X-z S (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323

    Article  Google Scholar 

  • Wünsch S, Sanchez CP, Gekle M, Große-Wortmann L, Wiesner J, Lanzer M (1998) Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake in Plasmodium falciparum. J Cell Biol 140:335–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang Z, Sun X, Wan W, Cui L, Zhang X, Zhong D, Yan G, Cui L (2007) Molecular analysis of chloroquine resistance in Plasmodium falciparum in Yunnan Province, China. Trop Med Int Health 12:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Howard EM, Roepe PD (2002) Analysis of the antimalarial drug resistance protein PfCRT expressed in yeast. J Biol Chem 277:49767–49775

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Paguio M, Roepe PD (2004) The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine. Biochemistry 43:8290–8296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many outstanding laboratory colleagues have contributed to the studies from the Roepe laboratory mentioned in this chapter. We thank in particular Drs. L. Ursos, S. Dzekunov, E. Howard, T. Bennett, B. Gligorejevic, A. Kosar, L. Amoah, J. Lekostaj, M. Paguio, M. Cabrera, C. Xie, J. Alumasa, N. Baro, A. Gorka, and D. Gaviria. We also thank A. Siriwardana, Y. Liu, K. Sherlach, L. Jacobs, L. Turnbull, Drs. A. Sinai and M. Ferdig for additional helpful discussions, and Dr. A. Gorka for helping with Fig. 1. The work done in the Roepe laboratory since the cloning of pfcrt has been supported by the Burroughs Wellcome Foundation, the Luce Foundation, the US Department of Defense, and the NIH (RO1 AI045957, AI056312, AI052312, AI060792, and AI071121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Roepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Callaghan, P.S., Roepe, P.D. (2017). The Biochemistry of Quinoline Antimalarial Drug Resistance. In: Berghuis, A., Matlashewski, G., Wainberg, M., Sheppard, D. (eds) Handbook of Antimicrobial Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0694-9_16

Download citation

Publish with us

Policies and ethics