Skip to main content

Strategies for Circumventing Bacterial Resistance Mechanisms

  • Reference work entry
  • First Online:
  • 1819 Accesses

Abstract

The future practices for the control of bacterial infections are uncertain. The intransigent infection is no longer found just among the immune compromised but is now found both in and out the boundaries of the hospital. Preserving the efficacy of the antibacterials we have, in order to secure the time needed to discover and develop new antibacterials, will require abrupt change: in the way antibacterials are dispensed and disposed, in the criteria used to measure clinical safety and efficacy, in the financial incentives for antibacterial development, and in the understanding of the molecular mechanisms governing the relationship between the antibacterial and the bacterium. This review examines this relationship from the particular perspective of the eventual need to circumvent resistance mechanisms in order to reclaim the lifesaving value of the antibacterial chemical.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abranches J, Tijerina P, Aviles-Reyes A, Gaca AO, Kajfasz JK, Lemos JA (2013) The cell wall-targeting antibiotic stimulon of Enterococcus faecalis. PLoS One 8:e64875. doi:10.1371/journal.pone.0064875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal AK, Fishwick CWG (2010) Structure-based design of anti-infectives. Ann NY Acad Sci 1213:20–45. doi:10.1111/j.1749-6632.2010.05859.x

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Craney A, Pimentel-Elardo SM, Nodwell JR (2013) A synthetic, species-specific activator of secondary metabolism and sporulation in Streptomyces coelicolor. ChemBioChem 14:83–91. doi:10.1002/cbic.201200619

    Article  CAS  PubMed  Google Scholar 

  • Allen HK, Levine UY, Looft T, Bandrick M, Casey TA (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119. doi:10.1016/j.tim.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Aluotto S, Tynan H, Maggio C, Falzone M, Mukherjee A, Gullo V, Demain AL (2013) Development of a semi-defined medium supporting production of platensimycin and platencin by Streptomyces platensis. J Antibiot (Tokyo) 66:51–54. doi:10.1038/ja.2012.97

    Article  CAS  Google Scholar 

  • Amoroso A, Boudet J, Berzigotti S, Duval S, Teller N, Mengin-Lecreulx D, Luxen A, Simorre J-P, Joris B (2012) A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLoS Pathog 8:e1002571. doi:10.1371/journal.ppat.1002571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110:E99–E107. doi:10.1073/pnas.1205532110

    Article  CAS  PubMed  Google Scholar 

  • Anderson DE, Kim MB, Moore JT, O’Brien TE, Sorto NA, Grove CI, Lackner LL, Ames JB, Shaw JT (2012) Comparison of small molecule inhibitors of the bacterial cell division protein FtsZ and Identification of a reliable cross-species inhibitor. ACS Chem Biol 7:1918–1928. doi:10.1021/cb300340j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arede P, Ministro J, Oliveira DC (2013) Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA expression. Antimicrob Agents Chemother 57:3037–3045. doi:10.1128/AAC. 02621-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bald D, Koul A (2013) Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria. Drug Discov Today 18:250–255. doi:10.1016/j.drudis.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  • Balemans W, Vranckx L, Lounis N, Pop O, Guillemont J, Vergauwen K, Mol S, Gilissen R, Motte M, Lancois D, De Bolle M, Bonroy K, Lill H, Andries K, Bald D, Koul A (2012) Novel antibiotics targeting respiratory ATP synthesis in gram-positive pathogenic bacteria. Antimicrob Agents Chemother 56:4131–4139. doi:10.1128/AAC. 00273-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltz RH (2014) Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol 3:748–758. doi:10.1021/sb3000673

    Article  CAS  PubMed  Google Scholar 

  • Bara R, Zerfass I, Aly AH, Goldbach-Gecke H, Raghavan V, Sass P, Mándi A, Wray V, Polavarapu PL, Pretsch A, Lin W, Kurtán T, Debbab A, Brötz-Oesterhelt H, Proksch P (2013) Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus. J Med Chem 56:3257–3272. doi:10.1021/jm301816a

    Article  CAS  PubMed  Google Scholar 

  • Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207. doi:10.1111/j.1574-6976.2008.00104.x

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JG, Gilbert DN, Spellberg B (2013) Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 56:1445–1450. doi:10.1093/cid/cit070

    Article  CAS  PubMed  Google Scholar 

  • Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230. doi:10.1128/CMR. 00059-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker B, Cooper MA (2013) Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 8:105–115. doi:10.1021/cb3005116

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395. doi:10.1038/ja.2012.27

    Article  CAS  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender J-L (2013) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165. doi:10.1021/np400258f

    Article  CAS  PubMed  Google Scholar 

  • Bertsche U, Yang SJ, Kuehner D, Wanner S, Mishra NN, Roth T, Nega M, Schneider A, Mayer C, Grau T, Bayer AS, Weidenmaier C (2013) Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant MRSA clinical isolates. PLoS One 8:e67398. doi:10.1371/journal.pone.0067398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackledge MS, Worthington RJ, Melander C (2013) Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol 13:699–706. doi:10.1016/j.coph.2013.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodro M, Sabe N, Tubau F, Llado L, Baliellas C, Roca J, Cruzado JM, Carratala J (2013) Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients. Transplantation 96:843–849. doi:10.1097/TP.0b013e3182a049fd

    Article  PubMed  Google Scholar 

  • Bogan C, Marchaim D (2013) The role of antimicrobial stewardship in curbing carbapenem resistance. Future Microbiol 8:979–991. doi:10.2217/fmb.13.73

    Article  CAS  PubMed  Google Scholar 

  • Bologa CG, Ursu O, Oprea TI, Melançon CE III, Tegos GP (2013) Emerging trends in the discovery of natural product antibacterials. Curr Opin Pharmacol 13:678–687. doi:10.1016/j.coph.2013.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D (2013) 10 × ‘20 progress – development of new drugs active against gram-negative bacilli: an update from the infectious Diseases Society of America. Clin Infect Dis 56:1685–1694. doi:10.1093/cid/cit152

    Article  PubMed  PubMed Central  Google Scholar 

  • Bow EJ (2013) There should be no ESKAPE for febrile neutropenic cancer patients: the dearth of effective antibacterial drugs threatens anticancer efficacy. J Antimicrob Chemother 68:492–495. doi:10.1093/jac/dks512

    Article  CAS  PubMed  Google Scholar 

  • Breitling R, Achcar F, Takano E (2013) Modeling challenges in the synthetic biology of secondary metabolism. ACS Synth Biol 2:373–378. doi:10.1021/sb4000228

    Article  CAS  PubMed  Google Scholar 

  • Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O’Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG (2012a) Potent inhibitors of LpxC for the treatment of gram-negative infections. J Med Chem 55:914–923. doi:10.1021/jm2014748

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012b) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci U S A 109:18909–18914. doi:10.1073/pnas.1209126109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Santa Maria JPJ, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi:10.1146/annurev-micro-092412-155620

    Article  CAS  PubMed  Google Scholar 

  • Brown DG, Lister T, May-Dracka TL (2014) New natural products as new leads for antibacterial drug discovery. Bioorg Med Chem Lett 24:413–418. doi:10.1016/j.bmcl.2013.12.059

    Article  CAS  PubMed  Google Scholar 

  • Brynildsen MP, Winkler JA, Spina CS, Macdonald IC, Collins JJ (2013) Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotechnol 31:160–165. doi:10.1038/nbt.2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TDH (2014) Editorial: antibacterial targets for the 21st century. Bioorg Chem 55:1. doi:10.1016/j.bioorg.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  • Bush K (2012) Improving known classes of antibiotics: an optimistic approach for the future. Curr Opin Pharmacol 12:527–534. doi:10.1016/j.coph.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 66:571–591. doi:10.1038/ja.2013.86

    Article  CAS  Google Scholar 

  • Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 56:1810–1820. doi:10.1128/AAC. 05938-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304. doi:10.1016/j.ijmm.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Cavallari JF, Lamers RP, Scheurwater EM, Matos AL, Burrows LL (2013) Changes to Its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:3078–3084. doi:10.1128/AAC. 00268-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celler K, Koning RI, Koster AJ, van Wezel GP (2013) Multidimensional view of the bacterial cytoskeleton. J Bacteriol 195:1627–1636. doi:10.1128/JB.02194-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CJ, Lin JH, Chang KC, Lai MJ, Rohini R, Hu A (2013) Diagnosis of β-lactam resistance in Acinetobacter baumannii using shotgun proteomics and LC-nano-ESI ion trap MS. Anal Chem 85:2802–2808. doi:10.1021/ac303326a

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Cook LCC, Shu C-C, Chen Y, Manias DA, Ramkrishna D, Dunny GM, Hu W-S (2013) Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer. Proc Natl Acad Sci U S A 110:7086–7090. doi:10.1073/pnas.1212256110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra I (2013) The 2012 Garrod lecture: discovery of antibacterial drugs in the 21st century. J Antimicrob Chemother 68:496–505. doi:10.1093/jac/dks436

    Article  CAS  PubMed  Google Scholar 

  • Ciccolini M, Donker T, Köck R, Mielke M, Hendrix R, Jurke A, Rahamat-Langendoen J, Becker K, Niesters HGM, Grundmann H, Friedrich AW (2013) Infection prevention in a connected world: the case for a regional approach. Int J Med Microbiol 303:380–387. doi:10.1016/j.ijmm.2013.02.003

    Article  PubMed  Google Scholar 

  • Clark RB, Hunt DK, He M, Achorn C, Chen CL, Deng Y, Fyfe C, Grossman TH, Hogan PC, O’Brien WJ, Plamondon L, Ronn M, Sutcliffe JA, Zhu Z, Xiao XY (2012) Fluorocyclines. 2. Optimization of the C-9 side-chain for antibacterial activity and oral efficacy. J Med Chem 55:606–622. doi:10.1021/jm201467r

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (2013) Confronting the threat of multidrug-resistant gram-negative bacteria in critically ill patients. J Antimicrob Chemother 68:490–491. doi:10.1093/jac/dks460

    Article  CAS  PubMed  Google Scholar 

  • Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13:632–642. doi:10.1016/j.chom.2013.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commichau FM, Pietack N, Stulke J (2013) Essential genes in Bacillus subtilis: a re-evaluation after ten years. Mol Biosyst 9:1068–1075. doi:10.1039/c3mb25595f

    Article  CAS  PubMed  Google Scholar 

  • Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. doi:10.1038/nature12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303:287–292. doi:10.1016/j.ijmm.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  • Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. J Antibiot (Tokyo) 66:387–400. doi:10.1038/ja.2013.25

    Article  CAS  Google Scholar 

  • Dalhoff A, Weintraub A, Nord CE (2014) Alternative strategies for proof-of-principle studies of antibacterial agents. Antimicrob Agents Chemother 58:4257–4263. doi:10.1128/AAC. 02473-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies J (2013) Specialized microbial metabolites: functions and origins. J Antibiot (Tokyo) 66:361–364. doi:10.1038/ja.2013.61

    Article  CAS  Google Scholar 

  • Davies J (2014) The origin and evolution of antibiotics. In: Antimicrobials: new and old molecules in the fight against multi-resistant bacteria. Springer, Heidelberg, pp 3–10. doi:10.1007/978-3-642-39968-8_1

    Chapter  Google Scholar 

  • Davies SC, Fowler T, Watson J, Livermore DM, Walker D (2013) Annual report of the chief medical officer: Infection and the rise of antimicrobial resistance. Lancet 381:1606–1609. doi:10.1016/S0140-6736(13)60604-2

    Article  PubMed  Google Scholar 

  • Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO (2013) Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci U S A 110:2336–2341. doi:10.1073/pnas.1218524110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhand A, Bayer AS, Pogliano J, Yang SJ, Bolaris M, Nizet V, Wang G, Sakoulas G (2011) Use of antistaphylococcal β-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis 53:158–163. doi:10.1093/cid/cir340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201. doi:10.1128/CMR. 00037-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P (2010) Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol Biosyst 6:2482–2489. doi:10.1039/c0mb00001a

    Article  CAS  PubMed  Google Scholar 

  • East SP, Silver LL (2013) Multitarget ligands in antibacterial research: progress and opportunities. Expert Opin Drug Discov 8:143–156. doi:10.1517/17460441.2013.743991

    Article  CAS  PubMed  Google Scholar 

  • Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28. doi:10.1111/j.1749-6632.2012.06818.x

    Article  CAS  PubMed  Google Scholar 

  • El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH (2013) High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J Nat Prod 76:1709–1716. doi:10.1021/np4004307

    Article  CAS  PubMed  Google Scholar 

  • Elsen NL, Lu J, Parthasarathy G, Reid JC, Sharma S, Soisson SM, Lumb KJ (2012) Mechanism of action of the cell-division inhibitor PC190723: modulation of FtsZ assembly cooperativity. J Am Chem Soc 134:12342–12345. doi:10.1021/ja303564a

    Article  CAS  PubMed  Google Scholar 

  • Eun YJ, Zhou M, Kiekebusch D, Schlimpert S, Trivedi RR, Bakshi S, Zhong Z, Wahlig TA, Thanbichler M, Weibel DB (2013) Divin: a small molecule inhibitor of bacterial divisome assembly. J Am Chem Soc 135:9768–9776. doi:10.1021/ja404640f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado AR, Su SY, Espinosa L, Loiseau L, Py B, Typas A, Barras F (2013) Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340:1583–1587. doi:10.1126/science.1238328

    Article  CAS  PubMed  Google Scholar 

  • Farha MA, Leung A, Sewell EW, D’Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED (2013a) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol 8:226–233. doi:10.1021/cb300413m

    Article  CAS  PubMed  Google Scholar 

  • Farha MA, Verschoor CP, Bowdish D, Brown ED (2013b) Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem Biol 20:1168–1178. doi:10.1016/j.chembiol.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Fernández A, Pérez A, Ayala JA, Mallo S, Rumbo-Feal S, Tomás M, Poza M, Bou G (2012) Expression of OXA-Type and SFO-1 β-lactamases Induces changes in peptidoglycan composition and affects bacterial fitness. Antimicrob Agents Chemother 56:1877–1884. doi:10.1128/AAC. 05402-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández L, Álvarez-Ortega C, Wiegand I, Olivares J, Kocíncová D, Lam JS, Martínez JL, Hancock REW (2013) Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:110–119. doi:10.1128/AAC. 01583-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li XZ, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E (2013) The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis 57:704–710. doi:10.1093/cid/cit355

    Article  PubMed  Google Scholar 

  • Fonvielle M, Li de La Sierra-Gallay I, El-Sagheer AH, Lecerf M, Patin D, Mellal D, Mayer C, Blanot D, Gale N, Brown T, van Tilbeurgh H, Ethève-Quelquejeu M, Arthur M (2013) The structure of FemXWv in complex with a peptidyl-RNA conjugate: mechanism of aminoacyl transfer from Ala-tRNA(Ala) to peptidoglycan precursors. Angew Chem Int Ed 52:7278–7281. doi:10.1002/anie.201301411

    Article  CAS  Google Scholar 

  • Foss MH, Eun Y-J, Grove CI, Pauw DA, Sorto NA, Rensvold JW, Pagliarini DJ, Shaw JT, Weibel DB (2013) Inhibitors of bacterial tubulin target bacterial membranes in vivo. Med Chem Comm 4:112–119. doi:10.1039/c2md20127e

    Article  CAS  Google Scholar 

  • Foucault ML, Depardieu F, Courvalin P, Grillot-Courvalin C (2010) Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci. Proc Natl Acad Sci U S A 107:16964–16969. doi:10.1073/pnas.1006855107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galán JC, González-Candelas F, Rolain JM, Cantón R (2013) Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases’ world. Front Microbiol 4:9. doi:10.3389/fmicb.2013.00009

    Article  PubMed  PubMed Central  Google Scholar 

  • Gammon K (2014) Drug discovery: leaving no stone unturned. Nature 509:S10–S12. doi:10.1038/509S10a

    Article  CAS  PubMed  Google Scholar 

  • Gerdes K, Ingmer H (2013) Antibiotics: killing the survivors. Nature 503:347–349. doi:10.1038/nature12834

    Article  CAS  PubMed  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98. doi:10.1016/j.chembiol.2011.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg K, Sarig H, Zaknoon F, Epand RF, Epand RM, Mor A (2013) Sensitization of gram-negative bacteria by targeting the membrane potential. FASEB J 27:3818–3826. doi:10.1096/fj.13-227942

    Article  CAS  PubMed  Google Scholar 

  • Graupner K, Scherlach K, Bretschneider T, Lackner G, Roth M, Gross H, Hertweck C (2012) Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen. Angew Chem Int Ed 51:13173–13177. doi:10.1002/anie.201206658

    Article  CAS  Google Scholar 

  • Greenfield LK, Whitfield C (2012) Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 356:12–24. doi:10.1016/j.carres.2012.02.027

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bram EE, Weiss R (2013) Genetically programmable pathogen sense and destroy. ACS Synth Biol 2:715–723. doi:10.1021/sb4000417

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez A, Laureti L, Crussard S, Abida H, Rodriguez-Rojas A, Blazquez J, Baharoglu Z, Mazel D, Darfeuille F, Vogel J, Matic I (2013) β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4:1610. doi:10.1038/ncomms2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall CL, Tschannen M, Worthey EA, Kristich CJ (2013) IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrob Agents Chemother 57:6179–6686. doi:10.1128/AAC. 01472-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Händel N, Schuurmans JM, Brul S, ter Kuile BH (2013) Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother 57:3752–3762. doi:10.1128/AAC. 02096-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hankins JV, Madsen JA, Giles DK, Brodbelt JS, Trent MS (2012) Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc Natl Acad Sci U S A 109:8722–8727. doi:10.1073/pnas.1201313109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, Ogilvy-Stuart AL, Ellington MJ, Quail MA, Bentley SD, Parkhill J, Peacock SJ (2013) Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 13:130–136. doi:10.1016/S1473-3099(12)70268-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haruki H, Pedersen MG, Gorska KI, Pojer F, Johnsson K (2013) Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs. Science 340:987–991. doi:10.1126/science.1232972

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Ali SZ, Khan AU (2013) Novel combinations of antibiotics to inhibit extended-spectrum β-lactamase and metallo-β-lactamase producers in vitro: a synergistic approach. Future Microbiol 8:939–944. doi:10.2217/fmb.13.54

    Article  CAS  PubMed  Google Scholar 

  • Hede K (2014) Antibiotic resistance: an infectious arms race. Nature 509:S2–S3. doi:10.1038/509S2a

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa H, Tomita H (2013) Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol 4:114. doi:10.3389/fmicb.2013.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Holt KE, Thieu Nga TV, Thanh DP, Vinh H, Kim DW, Vu Tra MP, Campbell JI, Hoang NV, Vinh NT, Minh PV, Thuy CT, Nga TT, Thompson C, Dung TT, Nhu NT, Vinh PV, Tuyet PT, Phuc HL, Lien NT, Phu BD, Ai NT, Tien NM, Dong N, Parry CM, Hien TT, Farrar JJ, Parkhill J, Dougan G, Thomson NR, Baker S (2013) Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc Natl Acad Sci U S A 110:17522–17527. doi:10.1073/pnas.1308632110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA (2013) Imaging mass spectrometry reveals highly specific interactions between actinomycetes to activate specialized metabolic gene clusters. MBio 4:e00612–e00613. doi:10.1128/mBio. 00612-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howard SJ, Hopwood S, Davies SC (2014) Antimicrobial resistance: a global challenge. Sci Transl Med 6:236ed10. doi:10.1126/scitranslmed.3009315

    Article  PubMed  Google Scholar 

  • Huang KH, Durand-Heredia J, Janakiraman A (2013) FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J Bacteriol 195:1859–1868. doi:10.1128/JB.02157-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber J, Donald RG, Lee SH, Jarantow LW, Salvatore MJ, Meng X, Painter R, Onishi RH, Occi J, Dorso K, Young K, Park YW, Skwish S, Szymonifka MJ, Waddell TS, Miesel L, Phillips JW, Roemer T (2009) Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem Biol 16:837–848. doi:10.1016/j.chembiol.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  • Imamovic L, Sommer MOA (2013) Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 5:204ra132. doi:10.1126/scitranslmed.3006609

    Google Scholar 

  • Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, Leoni L, Bragonzi A, Visca P (2013a) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110:7458–7463. doi:10.1073/pnas.1222706110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi F, Massai F, Pillai CR, Longo F, Zennaro E, Rampioni G, Visca P, Leoni L (2013b) New life for an old drug: the anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrob Agents Chemother 57:996–1005. doi:10.1128/AAC. 01952-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CRH (2000) Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 275:11002–11009. doi:10.1074/jbc.275.15.11002

    Article  CAS  PubMed  Google Scholar 

  • Jang KH, Nam SJ, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W (2013) Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew Chem Int Ed 52:7822–7824. doi:10.1002/anie.201302749

    Article  CAS  Google Scholar 

  • Jiang W, Li B, Zheng X, Liu X, Pan X, Qing R, Cen Y, Zheng J, Zhou H (2013) Artesunate has its enhancement on antibacterial activity of β-lactams via increasing the antibiotic accumulation within methicillin-resistant Staphylococcus aureus (MRSA). J Antibiot (Tokyo) 66:339–345. doi:10.1038/ja.2013.22

    Article  CAS  Google Scholar 

  • Johnson JW, Fisher JF, Mobashery S (2013) Bacterial cell-wall recycling. Ann N Y Acad Sci 1277:54–75. doi:10.1111/j.1749-6632.2012.06813.x

    Article  CAS  PubMed  Google Scholar 

  • Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 5:192ra85. doi:10.1126/scitranslmed.3006055

    Google Scholar 

  • Kamen Ek S, Gur-Bertok D (2013) Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC Microbiol 13:42. doi:10.1186/1471-2180-13-42

    Article  CAS  Google Scholar 

  • Kaneti G, Sarig H, Marjieh I, Fadia Z, Mor A (2013) Simultaneous breakdown of multiple antibiotic resistance mechanisms in S. aureus. FASEB J 27:4834–4843. doi:10.1096/fj.13-237610

    Article  CAS  PubMed  Google Scholar 

  • Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS (2013) An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo. Antimicrob Agents Chemother 57:5860–5869. doi:10.1128/AAC. 01016-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Keffer JL, Huecas S, Hammill JT, Wipf P, Andreu JM, Bewley CA (2013) Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria. Bioorg Med Chem 21:5673–5678. doi:10.1016/j.bmc.2013.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelesidis T, Tewhey R, Humphries RM (2013) Evolution of high-level daptomycin resistance in Enterococcus faecium during daptomycin therapy is associated with limited mutations in the bacterial genome. J Antimicrob Chemother 68:1926–1928. doi:10.1093/jac/dkt117

    Article  CAS  PubMed  Google Scholar 

  • Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339:1213–1216. doi:10.1126/science.1232688

    Article  CAS  PubMed  Google Scholar 

  • Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S, Yu G, Delaney E, Jankowsky E, Shoham M (2013) Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652. doi:10.1128/AAC. 00269-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, O’Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE III, Rhee KY, Ehrt S, Schnappinger D (2013) A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci U S A 110:19095–19100. doi:10.1073/pnas.1315860110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirst HA (2013) Developing new antibacterials through natural product research. Expert Opin Drug Discov 8:479–493. doi:10.1517/17460441.2013.779666

    Article  CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435. doi:10.1038/nrmicro2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M, Hashimoto J, Takagi M, Omura S, Shin-ya K, Cane DE, Ikeda H (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396. doi:10.1021/sb3001003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koteva K, Hong HJ, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6:327–329. doi:10.1038/nchembio.350

    Article  CAS  PubMed  Google Scholar 

  • Koyama N, Tokura Y, Munch D, Sahl HG, Schneider T, Shibagaki Y, Ikeda H, Tomoda H (2012) The non-antibiotic small molecule cyslabdan enhances the potency of β-lactams against MRSA by inhibiting pentaglycine interpeptide bridge synthesis. PLoS One 7:e48981. doi:10.1371/journal.pone.0048981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarasiri M, Llarrull LI, Borbulevych O, Fishovitz J, Lastochkin E, Baker BM, Mobashery S (2012) An amino-acid position at the crossroads of evolution of protein function: antibiotic-sensor domain of the BlaR1 protein from Staphylococcus aureus vs. class D β-lactamases. J Biol Chem 287:8232–8241. doi:10.1074/jbc.M111.333179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwun MJ, Novotna G, Hesketh AR, Hill L, Hong HJ (2013) In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to d-Ala-d-Ala termini in the peptidoglycan cell wall. Antimicrob Agents Chemother 57:4470–4480. doi:10.1128/AAC. 00523-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lages MC, Beilharz K, Morales Angeles D, Veening JW, Scheffers DJ (2013) The localization of key Bacillus subtilis penicillin binding proteins during cell growth is determined by substrate availability. Environ Microbiol 15:3272–3281. doi:10.1111/1462-2920.12206

    Article  CAS  PubMed  Google Scholar 

  • Laxminarayan R (2014) Antibiotic effectiveness: balancing conservation against innovation. Science 345:1299–1301. doi:10.1126/science.1254163

    Article  CAS  PubMed  Google Scholar 

  • Lázár V, Pal Singh G, Spohn R, Nagy I, Horváth B, Hrtyan M, Busa-Fekete R, Bogos B, Méhi O, Csörgő B, Pósfai G, Fekete G, Szappanos B, Kégl B, Papp B, Pál C (2013) Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 9:700. doi:10.1038/msb.2013.57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Hello S, Harrois D, Bouchrif B, Sontag L, Elhani D, Guibert V, Zerouali K, Weill FX (2013) Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. Lancet Infect Dis 13:672–679. doi:10.1016/S1473-3099(13)70124-5

    Article  PubMed  Google Scholar 

  • Lee K, Campbell J, Swoboda JG, Cuny GD, Walker S (2010) Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg Med Chem Lett 20:1767–1770. doi:10.1016/j.bmcl.2010.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard PG, Golemi-Kotra D, Stock AM (2013) Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc Natl Acad Sci U S A 110:8525–8530. doi:10.1073/pnas.1302819110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuthner KD, Doern GV (2013) Antimicrobial stewardship programs. J Clin Microbiol 51:3916–3920. doi:10.1128/JCM. 01751-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387. doi:10.1038/nrd3975

    Article  CAS  PubMed  Google Scholar 

  • Lima TB, Pinto MFS, Ribeiro SM, Alves de Lima L, Viana JC, Júnior NG, de Souza Candido E, Dias SC, Franco OL (2013) Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 27:1291–1303. doi:10.1096/fj.12-221127

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339:1210–1213. doi:10.1126/science.1232751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM (2014) Of stewardship, motherhood and apple pie. Int J Antimicrob Agents 43:319–322. doi:10.1016/j.ijantimicag.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  • Llarrull LI, Mobashery S (2012) Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 51:4642–4649. doi:10.1021/bi300429p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM (2013) 18β-Glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob Agents Chemother 57:241–247. doi:10.1128/AAC. 01023-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Ma S (2012) The development of FtsZ inhibitors as potential antibacterial agents. ChemMedChem 7:1161–1172. doi:10.1002/cmdc.201200156

    Article  CAS  PubMed  Google Scholar 

  • Maffioli SI, Fabbretti A, Brandi L, Savelsbergh A, Monciardini P, Abbondi M, Rossi R, Donadio S, Gualerzi CO (2013) Orthoformimycin, a selective inhibitor of bacterial translation elongation from Streptomyces containing an unusual orthoformate. ACS Chem Biol 8:1939–1946. doi:10.1021/cb4004095

    Article  CAS  PubMed  Google Scholar 

  • Mahoney TF, Silhavy TJ (2013) The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol 195:1869–1874. doi:10.1128/JB.02197-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157(3):539–548. doi:10.1016/j.cell.2014.02.050

    Article  CAS  PubMed  Google Scholar 

  • Mann PA, Muller A, Xiao L, Pereira PM, Yang C, Lee SH, Wang H, Trzeciak J, Schneeweis J, Dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Onder K, Kargman S, Monsma FJ, Pinho MG, Schneider T, Roemer T (2013) Murgocil is a highly bioactive staphylococcal-specific Inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8:2442–2451. doi:10.1021/cb400487f

    Article  CAS  PubMed  Google Scholar 

  • Manoil C (2013) Clarifying the role of two-component regulation in antibiotic killing. J Bacteriol 195:1857–1858. doi:10.1128/JB.00190-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Master RN, Deane J, Opiela C, Sahm DF (2013) Recent trends in resistance to cell envelope-active antibacterial agents among key bacterial pathogens. Ann N Y Acad Sci 1277:1–7. doi:10.1111/nyas.12022

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Yamane J, Mogi N, Yamaguchi H, Takemoto H, Yao M, Tanaka I (2012) Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr 68:1175–1188. doi:10.1107/S0907444912022640

    Article  CAS  PubMed  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L, Kalan L, King AM, Koteva K, Morar M, Mulvey MR, O’Brien JS, Pawlowski AC, Piddock LJV, Spanogiannopoulos P, Sutherland AD, Tang I, Taylor PL, Thaker M, Wang W, Yan M, Yu T, Wright GD (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357. doi:10.1128/AAC. 00419-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna M (2013) Antibiotic resistance: the last resort. Nature 499:394–396. doi:10.1038/499394a

    Article  CAS  PubMed  Google Scholar 

  • Méhi O, Bogos B, Csörgo B, Päl C (2013) Genomewide screen for modulators of evolvability under toxic antibiotic exposure. Antimicrob Agents Chemother 57:3453–3456. doi:10.1128/AAC. 02454-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta S, Singh C, Plata KB, Chanda PK, Paul A, Riosa S, Rosato RR, Rosato AE (2012) β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother 56:6192–6200. doi:10.1128/AAC. 01525-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melamed Yerushalmi S, Buck ME, Lynn DM, Lemcoff NG, Meijler MM (2013) Multivalent alteration of quorum sensing in Staphylococcus aureus. Chem Commun 49:5177–5179. doi:10.1039/c3cc41645c

    Article  CAS  Google Scholar 

  • Metz M, Shlaes DM (2014) Eight more ways to deal with antibiotic resistance. Antimicrob Agents Chemother 58:4253–4256. doi:10.1128/AAC. 02623-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miskinyte M, Gordo I (2013) Increased survival of antibiotic-resistant Escherichia coli inside macrophages. Antimicrob Agents Chemother 57:189–195. doi:10.1128/AAC. 01632-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuma SF, Mansour MK, Dekker JP, Kim J, Rahman MZ, Tweed-Kent A, Schuetz P (2013) Promising new assays and technologies for the diagnosis and management of infectious diseases. Clin Infect Dis 56:996–1002. doi:10.1093/cid/cis1014

    Article  CAS  PubMed  Google Scholar 

  • Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222. doi:10.1038/nature12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery JI, Brown MF, Reilly U, Price LM, Abramite JA, Arcari J, Barham R, Che Y, Chen JM, Chung SW, Collantes EM, Desbonnet C, Doroski M, Doty J, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, McAllister L, McElroy E, Menard CA, Mitton-Fry M, Mullins L, Noe MC, O’Donnell J, Oliver R, Penzien J, Plummer M, Shanmugasundaram V, Thoma C, Tomaras AP, Uccello DP, Vaz A, Wishka DG (2012) Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem 55:1662–1670. doi:10.1021/jm2014875

    Article  CAS  PubMed  Google Scholar 

  • Moraski GC, Markley LD, Cramer J, Hipskind PA, Boshoff H, Bailey MA, Alling T, Ollinger J, Parish T, Miller MJ (2013) Advancement of imidazo[1,2-a]pyridines with improved pharmacokinetics and nM activity vs. M. tuberculosis. ACS Med Chem Lett 4:675–679. doi:10.1021/ml400088y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morkunas B, Galloway WR, Wright M, Ibbeson BM, Hodgkinson JT, O’Connell KM, Bartolucci N, Valle MD, Welch M, Spring DR (2012) Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 10:8452–8464. doi:10.1039/c2ob26501j

    Article  CAS  PubMed  Google Scholar 

  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5:190ra81. doi:10.1126/scitranslmed.3006276

    Google Scholar 

  • Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A (2012) Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, PBP profiles, and binding affinities. Antimicrob Agents Chemother 56:4771–4778. doi:10.1128/AAC. 00680-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moynie L, Schnell R, McMahon SA, Sandalova T, Boulkerou WA, Schmidberger JW, Alphey M, Cukier C, Duthie F, Kopec J, Liu H, Jacewicz A, Hunter WN, Naismith JH, Schneider G (2013) The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:25–34. doi:10.1107/S1744309112044739

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Price LS, Quinn JP (2013) Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis 26:378–387. doi:10.1097/01.qco.0000431853.71500.77

    Article  PubMed  Google Scholar 

  • Nakashima R, Sakurai K, Yamasaki S, Hayashi K, Nagata C, Hoshino K, Onodera Y, Nishino K, Yamaguchi A (2013) Structural basis for the inhibition of bacterial multidrug exporters. Nature 500:102–106. doi:10.1038/nature12300

    Article  CAS  PubMed  Google Scholar 

  • Nikitushkin VD, Demina GR, Shleeva MO, Kaprelyants AS (2013) Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie Van Leeuwenhoek 103:37–46. doi:10.1007/s10482-012-9784-1

    Article  CAS  PubMed  Google Scholar 

  • Nonejuie P, Burkart M, Pogliano K, Pogliano J (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110:16169–16174. doi:10.1073/pnas.1311066110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak R (2011) Are pleuromutilin antibiotics finally fit for human use? Ann NY Acad Sci 1241:71–81. doi:10.1111/j.1749-6632.2011.06219.x

    Article  CAS  PubMed  Google Scholar 

  • O’Connell KMG, Hodgkinson JT, Sore HF, Welch M, Salmond GPC, Spring DR (2013) Combating multidrug-resistant bacteria: current strategies for the discovery of novel antibacterials. Angew Chem Int Ed 52:10706–10733. doi:10.1002/anie.201209979

    Article  CAS  Google Scholar 

  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110:17981–17986. doi:10.1073/pnas.1316981110

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojima I, Kumar K, Awasthi D, Vineberg JG (2014) Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorg Med Chem 22(18):5060–5077. doi:10.1016/j.bmc.2014.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongley SE, Bian X, Zhang Y, Chau R, Gerwick WH, Müller R, Neilan BA (2013) High-titer heterologous production in E. coli of lyngbyatoxin, a PKC activator from an uncultured marine cyanobacterium. ACS Chem Biol 8:1888–1893. doi:10.1021/cb400189j

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2013a) Blocking the spread of resistance. Sci Transl Med 5:184fs17. doi:10.1126/scitranslmed.3006128.

    Google Scholar 

  • Otto M (2013b) Community-associated MRSA: what makes them special? Int J Med Microbiol 303:324–330. doi:10.1016/j.ijmm.2013.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Paphitou NI (2013) Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agents 42(Suppl 1):S25–S28. doi:10.1016/j.ijantimicag.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  • Pasquina LW, Santa Maria JP, Walker S (2013) Teichoic acid biosynthesis as an antibiotic target. Curr Opin Microbiol 16:531–537. doi:10.1016/j.mib.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Leibovici L (2013) Combination therapy for Pseudomonas aeruginosa bacteremia: where do we stand? Clin Infect Dis 57:217–220. doi:10.1093/cid/cit220

    Article  PubMed  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  • Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC Jr, Eliopoulos GM (2012) Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One 7:e28316. doi:10.1371/journal.pone.0028316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier MR, Casella LG, Jones JW, Adams MD, Zurawski DV, Hazlett KR, Doi Y, Ernst RK (2013) Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob Agents Chemother 57:4831–4840. doi:10.1128/AAC. 00865-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti-Infect Ther 11:297–308. doi:10.1586/eri.13.12

    Article  CAS  PubMed  Google Scholar 

  • Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138. doi:10.3389/fmicb.2013.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, Jiricek J, Jung J, Jeon HK, Cechetto J, Christophe T, Lee H, Kempf M, Jackson M, Lenaerts AJ, Pham H, Jones V, Seo MJ, Kim YM, Seo M, Seo JJ, Park D, Ko Y, Choi I, Kim R, Kim SY, Lim S, Yim SA, Nam J, Kang H, Kwon H, Oh CT, Cho Y, Jang Y, Kim J, Chua A, Tan BH, Nanjundappa MB, Rao SP, Barnes WS, Wintjens R, Walker JR, Alonso S, Lee S, Kim J, Oh S, Oh T, Nehrbass U, Han SJ, No Z, Lee J, Brodin P, Cho SN, Nam K, Kim J (2013) Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med 19:1157–1160. doi:10.1038/nm.3262

    Article  CAS  PubMed  Google Scholar 

  • Pilhofer M, Jensen GJ (2013) The bacterial cytoskeleton: more than twisted filaments. Curr Opin Cell Biol 25:125–133. doi:10.1016/j.ceb.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  • Pinho MG, Kjos M, Veening JW (2013) How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 11:601–614. doi:10.1038/nrmicro3088

    Article  CAS  PubMed  Google Scholar 

  • Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504. doi:10.1128/JB.00011-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucci MJ, Bush K (2013) Investigational antimicrobial agents of 2013. Clin Microbiol Rev 26:792–821. doi:10.1128/CMR. 00033-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey DM, Amirul Islam M, Turnbull L, Davis RA, Whitchurch CB, McAlpine SR (2013) Psammaplysin F: a unique inhibitor of bacterial chromosomal partitioning. Bioorg Med Chem Lett 23:4862–4866. doi:10.1016/j.bmcl.2013.06.082

    Article  CAS  PubMed  Google Scholar 

  • Rateb ME, Hallyburton I, Houssen WE, Bull AT, Goodfellow M, Santhanam R, Jaspars M, Ebel R (2013) Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv 3:14444–14450. doi:10.1039/C3RA42378F

    Article  CAS  Google Scholar 

  • Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL (2013) Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 24:2340–2349. doi:10.1091/mbc.E12-10-0728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter S, Ellington MJ, Cartwright EJ, Koser CU, Torok ME, Gouliouris T, Harris SR, Brown NM, Holden MT, Quail M, Parkhill J, Smith GP, Bentley SD, Peacock SJ (2013) Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 173:1397–1404. doi:10.1001/jamainternmed.2013.7734

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter SG, Elli D, Kim HK, Hendrickx APA, Sorg JA, Schneewind O, Missiakas D (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for gram-positive bacteria. Proc Natl Acad Sci U S A 110:3531–3536. doi:10.1073/pnas.1217337110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley MA, Robinson SM, Roy CM, Dorit RL (2013) Rethinking the composition of a rational antibiotic arsenal for the 21st century. Future Med Chem 5:1231–1242. doi:10.4155/fmc.13.79

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Blazquez J (2013) Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 303:293–297. doi:10.1016/j.ijmm.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  • Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231. doi:10.1038/nchembio.1205

    Article  CAS  PubMed  Google Scholar 

  • Roemer T, Davies J, Giaever G, Nislow C (2012) Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56. doi:10.1038/nchembio.744

    Article  CAS  Google Scholar 

  • Roemer T, Schneider T, Pinho MG (2013) Auxiliary factors: a chink in the armor of MRSA resistance to beta-lactam antibiotics. Curr Opin Microbiol 16:538–548. doi:10.1016/j.mib.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Avila LB, Huecas S, Artola M, Vergoñós A, Ramírez-Aportela E, Cercenado E, Barasoain I, Vázquez-Villa H, Martín-Fontecha M, Chacón P, López-Rodríguez ML, Andreu JM (2013) Synthetic inhibitors of bacterial cell division targeting the GTP binding site of FtsZ. ACS Chem Biol 8:2072–2083. doi:10.1021/cb400208z

    Article  CAS  PubMed  Google Scholar 

  • Saroj SD, Rather PN (2013) Streptomycin inhibits quorum sensing in Acinetobacter baumannii. Antimicrob Agents Chemother 57:1926–1929. doi:10.1128/AAC. 02161-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass P, Brötz-Oesterhelt H (2013) Bacterial cell division as a target for new antibiotics. Curr Opin Microbiol 16:522–530. doi:10.1016/j.mib.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Schäberle TF, Hack IM (2014) Overcoming the current deadlock in antibiotic research. Trends Microbiol 22:165–167. doi:10.1016/j.tim.2013.12.007

    Article  PubMed  CAS  Google Scholar 

  • Schaffner-Barbero C, Martin-Fontecha M, Chacon P, Andreu JM (2012) Targeting the assembly of bacterial cell division protein FtsZ with small molecules. ACS Chem Biol 7:269–277. doi:10.1021/cb2003626

    Article  CAS  PubMed  Google Scholar 

  • Sears P, Ichikawa Y, Ruiz N, Gorbach S (2013) Advances in the treatment of Clostridium difficile with fidaxomicin: a narrow spectrum antibiotic. Ann NY Acad Sci 1291:33–41. doi:10.1111/nyas.12135

    Article  CAS  PubMed  Google Scholar 

  • Seger C, Sturm S, Stuppner H (2013) Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques–state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Nat Prod Rep 30:970–987. doi:10.1039/c3np70015a

    Article  CAS  PubMed  Google Scholar 

  • Sewell EW, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot (Tokyo) 67:43–51. doi:10.1038/ja.2013.100

    Article  CAS  Google Scholar 

  • Shapiro S (2013) Speculative strategies for new antibacterials: all roads should not lead to Rome. J Antibiot (Tokyo) 66:371–386. doi:10.1038/ja.2013.27

    Article  CAS  Google Scholar 

  • Sherman DJ, Okuda S, Denny WA, Kahne D (2013) Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli. Bioorg Med Chem 21:4846–4851. doi:10.1016/j.bmc.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  • Shlaes DM (2013) New β-lactam–β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 1277:105–114. doi:10.1111/nyas.12010

    Article  CAS  PubMed  Google Scholar 

  • Shlaes DM, Spellberg B (2012) Overcoming the challenges to developing new antibiotics. Curr Opin Pharmacol 12:522–526. doi:10.1016/j.coph.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  • Shlaes DM, Sahm D, Opiela C, Spellberg B (2013) The FDA reboot of antibiotic development. Antimicrob Agents Chemother 57:4605–4607. doi:10.1128/AAC. 01277-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SB (2014) Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett 24(16):3683–3689. doi:10.1016/j.bmcl.2014.06.053

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Rubio A, Jayaswal RK, Silverman JA, Wilkinson BJ (2013) Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies. PLoS One 8:e58469. doi:10.1371/journal.pone.0058469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spellberg B, Bartlett JG, Gilbert DN (2013) The future of antibiotics and resistance. N Engl J Med 368:299–302. doi:10.1056/NEJMp1215093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Kach A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013. doi:10.1126/science.1182749

    Article  CAS  PubMed  Google Scholar 

  • Stacy DM, Welsh MA, Rather PN, Blackwell HE (2012) Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-acyl homoserine lactones. ACS Chem Biol 7:1719–1728. doi:10.1021/cb300351x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacy DM, Le Quement ST, Hansen CL, Clausen JW, Tolker-Nielsen T, Brummond JW, Givskov M, Nielsen TE, Blackwell HE (2013) Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. Org Biomol Chem 11:938–954. doi:10.1039/c2ob27155a

    Article  CAS  PubMed  Google Scholar 

  • Stanton TB (2013) A call for antibiotic alternatives research. Trends Microbiol 21:111–113. doi:10.1016/j.tim.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  • Stogios PJ, Spanogiannopoulos P, Evdokimova E, Egorova O, Shakya T, Todorovic N, Capretta A, Wright GD, Savchenko A (2013) Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem J 454:191–200. doi:10.1042/BJ20130317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes NR, Baker N, Bennett JM, Berry J, Collins I, Czaplewski LG, Logan A, Macdonald R, MacLeod L, Peasley H, Mitchell JP, Nayal N, Yadav A, Srivastava A, Haydon DJ (2013) An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy. Antimicrob Agents Chemother 57:317–325. doi:10.1128/AAC. 01580-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Vilar S, Tatonetti NP (2013) High-throughput methods for combinatorial drug discovery. Sci Transl Med 5:205rv1. doi:10.1126/scitranslmed.3006667.

    Google Scholar 

  • Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med 4:126ra35. doi:10.1126/scitranslmed.3003592.

    Google Scholar 

  • Tegos GP, Hamblin MR (2013) Disruptive innovations: new anti-infectives in the age of resistance. Curr Opin Pharmacol 13:673–677. doi:10.1016/j.coph.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Thaker MN, Wright GD (2014) Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. ACS Synth Biol. doi:10.1021/sb300092n

    Google Scholar 

  • Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, Wright GD (2013) Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol 31:922–927. doi:10.1038/nbt.2685

    Article  CAS  PubMed  Google Scholar 

  • Thorsing M, Klitgaard JK, Atilano ML, Skov MN, Kolmos HJ, Filipe SR, Kallipolitis BH (2013) Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300. PLoS One 8:e64518. doi:10.1371/journal.pone.0064518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TT, Panesso D, Gao H, Roh JH, Munita JM, Reyes J, Diaz L, Lobos EA, Shamoo Y, Mishra NN, Bayer AS, Murray BE, Weinstock GM, Arias CA (2013) Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob Agents Chemother 57:261–268. doi:10.1128/AAC. 01454-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay LW, Xu H, Blanchard JS (2010) Structures of the Michaelis complex (1.2 Å) and the covalent acyl intermediate (2.0 Å) of cefamandole bound in the active sites of the M. tuberculosis β-lactamase K73A and E166A mutants. Biochemistry 49:9685–9687. doi:10.1021/bi1015088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B (2012) Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 95:717–733. doi:10.1007/s00253-012-4167-0

    Article  CAS  PubMed  Google Scholar 

  • Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR (2013) Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989. doi:10.1111/1574-6976.12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikova N, Bem AE, van Baarlen P, Wells JM, Marina A (2013) WalK, the path towards new antibacterials with low potential for resistance development. ACS Med Chem Lett 4:891–894. doi:10.1021/ml400320s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignaroli C, Rinaldi C, Varaldo PE, Lee CH, Chen FJ, Lauderdale TL (2011) Striking “seesaw effect” between daptomycin nonsusceptibility and β-lactam susceptibility in Staphylococcus haemolyticus. Antimicrob Agents Chemother 55:2495–2497. doi:10.1128/AAC. 00224-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh CT, Wencewicz TA (2014) Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 67:7–22. doi:10.1038/ja.2013.49

    Article  CAS  Google Scholar 

  • Walsh CT, O’Brien RV, Khosla C (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed 52:7098–7124. doi:10.1002/anie.201208344

    Article  CAS  Google Scholar 

  • Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, Mcguinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol 20:272–284. doi:10.1016/j.chembiol.2012.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanty C, Anandan A, Piek S, Walshe J, Ganguly J, Carlson RW, Stubbs KA, Kahler CM, Vrielink A (2013) The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin. J Mol Biol 425:3389–3402. doi:10.1016/j.jmb.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  • Warmus JS, Quinn CL, Taylor C, Murphy ST, Johnson TA, Limberakis C, Ortwine D, Bronstein J, Pagano P, Knafels JD, Lightle S, Mochalkin I, Brideau R, Podoll T (2012) Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC. Bioorg Med Chem Lett 22:2536–2543. doi:10.1016/j.bmcl.2012.01.140

    Article  CAS  PubMed  Google Scholar 

  • Watkins RR, Bonomo RA (2013) Increasing prevalence of carbapenem-resistant Enterobacteriaceae and strategies to avert a looming crisis. Expert Rev Anti-Infect Ther 11:543–545. doi:10.1586/eri.13.46

    Article  CAS  PubMed  Google Scholar 

  • Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:E1743–E1752. doi:10.1073/pnas.1203689109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington EMH, Boxall ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13:155–165. doi:10.1016/S1473-3099(12)70317-1

    Article  CAS  PubMed  Google Scholar 

  • Werneburg M, Zerbe K, Juhas M, Bigler L, Stalder U, Kaech A, Ziegler U, Obrecht D, Eberl L, Robinson JA (2012) Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. ChemBioChem 13:1767–1775. doi:10.1002/cbic.201200276

    Article  CAS  PubMed  Google Scholar 

  • Werth BJ, Steed ME, Kaatz GW, Rybak MJ (2013a) Evaluation of ceftaroline activity against heteroresistant vancomycin-intermediate Staphylococcus aureus and vancomycin-intermediate methicillin-resistant S. aureus strains in an in vitro pharmacokinetic/pharmacodynamic model: exploring the ‘Seesaw Effect’. Antimicrob Agents Chemother 57:2664–2668. doi:10.1128/AAC. 02308-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werth BJ, Vidaillac C, Murray KP, Newton KL, Sakoulas G, Nonejuie P, Pogliano J, Rybak MJ (2013b) Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother 57:2376–2379. doi:10.1128/AAC. 02354-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke KE, Carlson EE (2013) All signals lost. Sci Transl Med 5:203ps12. doi:10.1126/scitranslmed.3006670.

    Google Scholar 

  • Wilson MZ, Gitai Z (2013) Beyond the cytoskeleton: mesoscale assemblies and their function in spatial organization. Curr Opin Microbiol 16:177–183. doi:10.1016/j.mib.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MC, Piel J (2013) Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem Biol 20:636–647. doi:10.1016/j.chembiol.2013.04.011

    Article  CAS  PubMed  Google Scholar 

  • Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G (2013) Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4:2345. doi:10.1038/ncomms3345

    Article  PubMed  PubMed Central  Google Scholar 

  • Worthington RJ, Melander C (2013a) Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol 31:177–184. doi:10.1016/j.tibtech.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington RJ, Melander C (2013b) Overcoming resistance to β-lactam antibiotics. J Org Chem 78:4207–4213. doi:10.1021/jo400236f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington RJ, Blackledge MS, Melander C (2013) Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5:1265–1284. doi:10.4155/fmc.13.58

    Article  CAS  PubMed  Google Scholar 

  • Wright G (2014) Perspective: synthetic biology revives antibiotics. Nature 509:S13. doi:10.1038/509S13a

    Article  CAS  PubMed  Google Scholar 

  • Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed 53:8840–8869. doi:10.1002/anie.201310843

    Article  CAS  Google Scholar 

  • Xiao XY, Hunt DK, Zhou J, Clark RB, Dunwoody N, Fyfe C, Grossman TH, O’Brien WJ, Plamondon L, Ronn M, Sun C, Zhang WY, Sutcliffe JA (2012) Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 55:597–605. doi:10.1021/jm201465w

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, Song J, Wang R (2013) Two hits are better than one: Membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-Lysin. Antimicrob Agents Chemother 57:220–228. doi:10.1128/AAC. 01619-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun M-K, Wu Y, Li Z, Zhao Y, Waddell MB, Ferreira AM, Lee RE, Bashford D, White SW (2012) Catalysis and sulfa drug resistance in dihydropteroate synthase. Science 335:1110–1114. doi:10.1126/science.1214641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakeri B, Lu TK (2013) Synthetic biology of antimicrobial discovery. ACS Synth Biol 2:358–372. doi:10.1021/sb300101g

    Article  CAS  PubMed  Google Scholar 

  • Zaknoon F, Goldberg K, Sarig H, Epand RF, Epand RM, Mor A (2012) Antibacterial properties of an oligo-acyl-lysyl hexamer targeting gram-negative species. Antimicrob Agents Chemother 56:4827–4832. doi:10.1128/AAC.00511-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Meredith TC, Kahne D (2013) On the essentiality of lipopolysaccharide to gram-negative bacteria. Curr Opin Microbiol 16:779–785. doi:10.1016/j.mib.2013.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Kaufmann GF (2013) Quo vadis quorum quenching? Curr Opin Pharmacol 13:688–698. doi:10.1016/j.coph.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Zlitni S, Ferruccio LF, Brown ED (2013) Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat Chem Biol 9:796–804. doi:10.1038/nchembio.1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoraghi R, Reiner NE (2013) Protein interaction networks as starting points to identify novel antimicrobial drug targets. Curr Opin Microbiol 16:566–572. doi:10.1016/j.mib.2013.07.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed F. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Fisher, J.F., Johnson, J.W., Mobashery, S. (2017). Strategies for Circumventing Bacterial Resistance Mechanisms. In: Berghuis, A., Matlashewski, G., Wainberg, M., Sheppard, D. (eds) Handbook of Antimicrobial Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0694-9_12

Download citation

Publish with us

Policies and ethics