Advertisement

Antibiotic Resistance and Tolerance in Bacterial Biofilms

  • Geoffrey McKayEmail author
  • Dao Nguyen
Reference work entry

Abstract

Bacteria can grow as multicellular communities called biofilms, and this sessile lifestyle is distinct from planktonic growth. While microbial biofilms are ubiquitous in the natural and industrial environment, their importance in human infections has only been fully recognized in the past few decades. Biofilm-associated bacteria typically cause subacute and chronic infections. Many bacterial pathogens, such as Staphylococcus aureus, readily form biofilms, and Pseudomonas aeruginosa, which causes chronic airway infections in patients with cystic fibrosis, is an important model organism for biofilm studies. They are clinically significant due to their persistence despite sustained antimicrobial treatments and adequate host defenses. Biofilm bacteria are highly resistant to a wide range of antimicrobial compounds and disinfectants, and the mechanisms underlying this resistance are likely multifactorial. This chapter will review the cellular processes and pathways implicated in antibiotic resistance and tolerance of bacterial biofilms.

Keywords

Biofilms Antibiotic Resistance Tolerance Infections Pseudomonas aeruginosa 

References

  1. Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93(12):6059–6063PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen P, Nielsen AK, Parsek M, Wozniak D, Molin SR, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6(11):e27943PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138, Epub 08 Mar 2006PubMedCrossRefGoogle Scholar
  4. Allegrucci M, Sauer K (2007) Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189(5):2030–2038PubMedCrossRefGoogle Scholar
  5. Allegrucci M, Sauer K (2008) Formation of Streptococcus pneumoniae non-phase-variable colony variants is Due to increased mutation frequency present under biofilm growth conditions. J Bacteriol 190(19):6330–6339PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alvarez-Ortega C, Harwood CS (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65(1):153PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amato SM, Orman MA, Brynildsen MP (2013) Metabolic control of persister formation in Escherichia coli. Mol Cell 50(4):475–487PubMedCrossRefGoogle Scholar
  9. An D, Parsek MR (2007) The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol 10(3):292–296PubMedCrossRefGoogle Scholar
  10. Anwar H, Dasgupta M, Lam K, Costerton JW (1989) Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. J Antimicrob Chemother 24(5):647–655PubMedCrossRefGoogle Scholar
  11. Arce Miranda JE, Sotomayor CE, Albesa I, Paraje MG (2011) Oxidative and nitrosative stress in Staphylococcus aureus biofilm. FEMS Microbiol Lett 315(1):23–29PubMedCrossRefGoogle Scholar
  12. Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and?-lactamase and alginate production. Antimicrob Agents Chemother 48(4):1175–1187PubMedPubMedCentralCrossRefGoogle Scholar
  13. Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21(6):768–775PubMedCrossRefGoogle Scholar
  14. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625, Epub 17 Aug 2004PubMedCrossRefGoogle Scholar
  15. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102(31):11076–11081PubMedPubMedCentralCrossRefGoogle Scholar
  16. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli*. Annu Rev Microbiol 65(1):189–213PubMedCrossRefGoogle Scholar
  17. Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186(14):4665–4684PubMedPubMedCentralCrossRefGoogle Scholar
  18. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51(3):659–674, Epub 21 Jan 2004PubMedCrossRefGoogle Scholar
  19. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppe J-Y, Ghigo J-M, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9(1):e1003144PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boles BR, Singh PK (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci 105(34):12503–12508PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101(47):16630–16635PubMedPubMedCentralCrossRefGoogle Scholar
  22. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48(7):2659–2664PubMedPubMedCentralCrossRefGoogle Scholar
  23. Borriello G, Richards L, Ehrlich GD, Stewart PS (2006) Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 50(1):382–384PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bowler LL, Zhanel GG, Ball TB, Saward LL (2012) Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 56(9):4976–4979PubMedPubMedCentralCrossRefGoogle Scholar
  25. Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14(1):45–54PubMedCrossRefGoogle Scholar
  26. Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13(1):20–26PubMedCrossRefGoogle Scholar
  27. Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646, Epub 19 Feb 2000PubMedPubMedCentralCrossRefGoogle Scholar
  28. Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22(6):777–780, Epub 01 Dec 1988PubMedCrossRefGoogle Scholar
  29. Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 1458–1496Google Scholar
  30. Castonguay MH, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 157(5):471–478PubMedCrossRefGoogle Scholar
  31. Chambers JR, Sauer K (2013) The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol 195(20):4678–4688PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen H, Hu J, Chen PR, Lan L, Li Z, Hicks LM, Dinner AR, He C (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci 105(36):13586–13591PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chiang W-C, Pamp SJ, Nilsson M, Givskov M, Tolker-Nielsen T (2012) The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol 65(2):245PubMedCrossRefGoogle Scholar
  34. Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N (2000) Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45(1):9–13PubMedCrossRefGoogle Scholar
  35. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13(6):632–642PubMedPubMedCentralCrossRefGoogle Scholar
  36. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264PubMedPubMedCentralCrossRefGoogle Scholar
  37. Conibear TCR, Collins SL, Webb JS (2009) Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS One 4(7):e6289PubMedPubMedCentralCrossRefGoogle Scholar
  38. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRefGoogle Scholar
  39. Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J, Tomasz A (1986) Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 29(5):797–802PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dalhoff A, Matutat S, Ullmann U (1995) Effect of quinolones against slowly growing bacteria. Chemotherapy 41(2):92–99, Epub 01 Mar 1995PubMedCrossRefGoogle Scholar
  41. De Beer D, Srinivasan R, Stewart PS (1994a) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60(12):4339–4344, Epub 01 Dec 1994PubMedPubMedCentralGoogle Scholar
  42. de Beer D, Stoodley P, Roe F, Lewandowski Z (1994b) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138PubMedCrossRefGoogle Scholar
  43. de Bentzmann S, Giraud C, Bernard CS, Calderon V, Ewald F, Plesiat P, Nguyen C, Grunwald D, Attree I, Jeannot K, Fauvarque M-O, Bordi C (2012) Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog 8(11):e1003052PubMedPubMedCentralCrossRefGoogle Scholar
  44. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45(6):1761–1770PubMedPubMedCentralCrossRefGoogle Scholar
  45. Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296(2):83–91PubMedCrossRefGoogle Scholar
  46. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178(1):169–175, Epub 14 Sept 1999PubMedCrossRefGoogle Scholar
  47. Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157(4):306–314PubMedCrossRefGoogle Scholar
  48. Dorr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5(12):e1000760PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):e1000317PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7(2):e31092PubMedPubMedCentralCrossRefGoogle Scholar
  51. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416(6882):740–743PubMedCrossRefGoogle Scholar
  52. Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61(5):1053–1056PubMedCrossRefGoogle Scholar
  53. Evans DJ, Allison DG, Brown MRW, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27(2):177–184PubMedCrossRefGoogle Scholar
  54. Fasani RA, Savageau MA (2013) Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci U S A 110(27):E2528–E2537PubMedPubMedCentralCrossRefGoogle Scholar
  55. Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol Infect Dis 24(10):677–687PubMedCrossRefGoogle Scholar
  56. Folsom JP, Richards L, Pitts B, Roe F, Ehrlich GD, Parker A, Mazurie AL, Stewart PS (2010) Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol 10(1):294PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fraud S, Poole K (2011) Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(3):1068–1074PubMedCrossRefGoogle Scholar
  58. Frawley ER, Crouch M-LV, Bingham-Ramos LK, Robbins HF, Wang W, Wright GD, Fang FC (2013) Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella typhimurium. Proc Natl Acad Sci 110(29):12054–12059PubMedPubMedCentralCrossRefGoogle Scholar
  59. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F (2013) Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother 68(7):1455–1464, Epub 15 Mar 2013PubMedCrossRefGoogle Scholar
  60. Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66(1):103–123PubMedCrossRefGoogle Scholar
  61. Gillis RJ, White KG, Choi KH, Wagner VE, Schweizer HP, Iglewski BH (2005) Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 49(9):3858–3867PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22(5):667–674PubMedCrossRefGoogle Scholar
  63. Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378, Epub 16 Apr 2002PubMedCrossRefGoogle Scholar
  64. Groisman EA, Kayser J, Soncini FC (1997) Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179(22):7040–7045PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hansen S, Lewis K, Vuliƒá M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718–2726PubMedPubMedCentralCrossRefGoogle Scholar
  66. Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53(6):2253–2258PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65(8):3710–3713, Epub 31 July 1999PubMedPubMedCentralGoogle Scholar
  68. Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52(Pt 4):295–301, Epub 05 Apr 2003PubMedCrossRefGoogle Scholar
  69. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, MacLeod C, Aaron SD, Harbour C (2005) Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43(10):5085–5090PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hirakawa H, Nishino K, Hirata T, Yamaguchi A (2003) Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Bacteriol 185(6):1851–1856, Epub 06 Mar 2003PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hoyle BD, Alcantara J, Costerton JW (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 36(9):2054–2056PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ito A, Taniuchi A, May T, Kawata K, Okabe S (2009) Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 75(12):4093–4100PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117(4):877–888PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K, Miyake Y (2009) The role of rpoS gene and quorum sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298(2):184–192PubMedCrossRefGoogle Scholar
  75. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18, Epub 22 Jan 2004PubMedCrossRefGoogle Scholar
  76. Khakimova M, Ahlgren H, Harrison JJ, English A, Nguyen D (2013) The stringent response controls catalases in Pseudomonas aeruginosa: implications for hydrogen peroxide and antibiotic tolerance. J Bacteriol 195(9):2011–2020PubMedPubMedCentralCrossRefGoogle Scholar
  77. Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O’Toole GA (2010) Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 13(4):207–212, Epub 16 Mar 2011PubMedPubMedCentralGoogle Scholar
  78. Kim YH, Lee Y, Kim S, Yeom J, Yeom S, Seok Kim B, Oh S, Park S, Jeon CO, Park W (2006) The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms. Proteomics 6(23):6181–6193PubMedCrossRefGoogle Scholar
  79. Kim J, Hahn J-S, Franklin MJ, Stewart PS, Yoon J (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63(1):129–135PubMedCrossRefGoogle Scholar
  80. Kint CI, Verstraeten N, Fauvart M, Michiels J (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20(12):577–585PubMedCrossRefGoogle Scholar
  81. Koh KS, Lam KW, Alhede M, Queck SY, Labbate M, Kjelleberg S, Rice SA (2007) Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol 189(1):119–130PubMedCrossRefGoogle Scholar
  82. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810, Epub 07 Sept 2007PubMedCrossRefGoogle Scholar
  83. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54(1):413–437PubMedCrossRefGoogle Scholar
  84. Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50(4):1199–1213PubMedCrossRefGoogle Scholar
  85. Król JE, Nguyen HD, Rogers LM, Beyenal H, Krone SM, Top EM (2011) Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77(15):5079–5088PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kumon H, Tomochika K-i, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–619PubMedCrossRefGoogle Scholar
  87. Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74(23):7376–7382PubMedPubMedCentralCrossRefGoogle Scholar
  88. Laham NA, Rohde H, Sander G, Fischer A, Hussain M, Heilmann C, Mack D, Proctor R, Peters G, Becker K, von Eiff C (2007) Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J Bacteriol 189(12):4494–4501PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K, Kaneko Y, Singh PK, Manoil C (2009) Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A 106(34):14570–14575, Epub 27 Aug 2009PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74(14):4463–4471PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  92. Lewis K (2010) Persister cells. Annu Rev Microbiol 64(1):357–372PubMedCrossRefGoogle Scholar
  93. Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836PubMedPubMedCentralCrossRefGoogle Scholar
  94. Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195(15):3352–3363PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-1,2, 4-triazole. Biotechnol Bioeng 59(2):156–162PubMedCrossRefGoogle Scholar
  96. Luo Y, Helmann JD (2012) Analysis of the role of Bacillus subtilis sigma(M) in beta-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83(3):623–639PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lynch SV, Dixon L, Benoit MR, Brodie EL, Keyhan M, Hu P, Ackerley DF, Andersen GL, Matin A (2007) Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 51(10):3650–3658PubMedPubMedCentralCrossRefGoogle Scholar
  98. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34(2):305–316, Epub 17 Nov 1999PubMedCrossRefGoogle Scholar
  99. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310PubMedCrossRefGoogle Scholar
  100. Maira-Litran T, Allison DG, Gilbert P (2000) An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother 45(6):789–795PubMedCrossRefGoogle Scholar
  101. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci 108(32):13206–13211PubMedPubMedCentralCrossRefGoogle Scholar
  102. Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154(5):1140–1150PubMedCrossRefGoogle Scholar
  103. McEllistrem MC, Ransford JV, Khan SA (2007) Characterization of in vitro biofilm-associated pneumococcal phase variants of a clinically relevant serotype 3 clone. J Clin Microbiol 45(1):97–101PubMedCrossRefGoogle Scholar
  104. McPhee JB, Lewenza S, Hancock REW (2003) Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50(1):205PubMedCrossRefGoogle Scholar
  105. Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Römling U, Häussler S (2007) Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9(10):2475PubMedCrossRefGoogle Scholar
  106. Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189(6):2411–2416PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mikkelsen H, Ball G, Giraud C, Filloux A (2009) Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One 4(6):e6018PubMedPubMedCentralCrossRefGoogle Scholar
  108. Miller PF, Sulavik MC (1996) Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli. Mol Microbiol 21(3):441–448PubMedCrossRefGoogle Scholar
  109. Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13(8):1122–1129PubMedCrossRefGoogle Scholar
  110. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14(3):255–261PubMedCrossRefGoogle Scholar
  111. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213PubMedPubMedCentralCrossRefGoogle Scholar
  112. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986PubMedPubMedCentralCrossRefGoogle Scholar
  113. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79PubMedCrossRefGoogle Scholar
  114. Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99(4):2287–2292, Epub 07 Feb 2002PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223PubMedCrossRefGoogle Scholar
  116. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97(16):8789–8793, Epub 02 Aug 2000PubMedPubMedCentralCrossRefGoogle Scholar
  117. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701, Epub 07 Oct 2003PubMedCrossRefGoogle Scholar
  118. Patell S, Gu M, Davenport P, Givskov M, Waite RD, Welch M (2010) Comparative microarray analysis reveals that the core biofilm-associated transcriptome of Pseudomonas aeruginosa comprises relatively few genes. Environ Microbiol Rep 2(3):440–448, Epub 01 June 2010PubMedCrossRefGoogle Scholar
  119. Patrauchan MA, Sarkisova SA, Franklin MJ (2007) Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology 153(11):3838–3851PubMedCrossRefGoogle Scholar
  120. Pérez-Osorio AC, Williamson KS, Franklin MJ (2010) Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J Bacteriol 192(12):2991–3000PubMedPubMedCentralCrossRefGoogle Scholar
  121. Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186(6):1638–1647PubMedPubMedCentralCrossRefGoogle Scholar
  122. Phillips NJ, Steichen CT, Schilling B, Post DMB, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW (2012) Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 7(6):e38303PubMedPubMedCentralCrossRefGoogle Scholar
  123. Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20(5):227–234PubMedCrossRefGoogle Scholar
  124. Potera C (1999) Forging a link between biofilms and disease. Science 283(5409):1837–1839PubMedCrossRefGoogle Scholar
  125. Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51, Epub 06 May 2008PubMedCrossRefGoogle Scholar
  126. Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32(1):38PubMedCrossRefGoogle Scholar
  127. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4(4):295–305PubMedCrossRefGoogle Scholar
  128. Raivio TL, Leblanc SK, Price NL (2013) The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 195(12):2755–2767PubMedPubMedCentralCrossRefGoogle Scholar
  129. Resch A, Rosenstein R, Nerz C, Gotz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676PubMedPubMedCentralCrossRefGoogle Scholar
  130. Romling U (2012) Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol 14(8):1817–1829PubMedCrossRefGoogle Scholar
  131. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107(28):12541–12546PubMedPubMedCentralCrossRefGoogle Scholar
  133. Ryder VJ, Chopra I, O’Neill AJ (2012) Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One 7(10):e47695PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154, Epub 25 Jan 2002PubMedPubMedCentralCrossRefGoogle Scholar
  135. Schaible B, Taylor CT, Schaffer K (2012) Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 56(4):2114–2118PubMedPubMedCentralCrossRefGoogle Scholar
  136. Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62(12):4641–4647, Epub 01 Dec 1996PubMedPubMedCentralGoogle Scholar
  137. Seneviratne CJ, Wang Y, Jin L, Wong SSW, Herath TDK, Samaranayake LP (2012) Unraveling the resistance of microbial biofilms: has proteomics been helpful? Proteomics 12(4–5):651–665PubMedCrossRefGoogle Scholar
  138. Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4(2):e00103–e00113PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53, Epub 14 June 2006PubMedPubMedCentralCrossRefGoogle Scholar
  140. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5):340–345PubMedCrossRefGoogle Scholar
  141. Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR (2011) The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull 36(5):367–373PubMedPubMedCentralCrossRefGoogle Scholar
  142. Singh R, Ray P, Das A, Sharma M (2010) Enhanced production of exopolysaccharide matrix and biofilm by a menadione-auxotrophic Staphylococcus aureus small-colony variant. J Med Microbiol 59(5):521–527PubMedCrossRefGoogle Scholar
  143. Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R (2009) Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155(Pt 4):1318–1331PubMedCrossRefGoogle Scholar
  144. Southey-Pillig CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187(23):8114–8126PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sriramulu DD, Lunsdorf H, Lam JS, Romling U (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54(Pt 7):667–676, Epub 11 June 2005PubMedCrossRefGoogle Scholar
  146. Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191(11):3492–3503, Epub 31 Mar 2009PubMedPubMedCentralCrossRefGoogle Scholar
  147. Staudinger BJ, Muller JF, Halldorsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreethsson M, Guethmundsson GH, Singh PK (2014) Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 189(7):812–824, Epub 29 Jan 2014PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sternberg C, Christensen BB, Johansen T, Nielsen AT, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65(9):4108–4117PubMedPubMedCentralGoogle Scholar
  149. Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522, Epub 01 Nov 1996PubMedPubMedCentralGoogle Scholar
  150. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210, Epub 12 Feb 2008PubMedCrossRefGoogle Scholar
  151. Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91(3):525–532, Epub 15 Sept 2001PubMedCrossRefGoogle Scholar
  152. Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC, European Listeria Genome C (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210(1):25–31PubMedCrossRefGoogle Scholar
  153. Tresse O, Jouenne T, Junter GA (1995) The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics. J Antimicrob Chemother 36(3):521–526PubMedCrossRefGoogle Scholar
  154. Trunk K, Benkert B, Quack N, Munch R, Scheer M, Garbe J, Jansch L, Trost M, Wehland J, Buer J, Jahn M, Schobert M, Jahn D (2010) Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 12(6):1719–1733, Epub 18 June 2010PubMedCrossRefGoogle Scholar
  155. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(5):1297–1304PubMedGoogle Scholar
  156. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011PubMedCrossRefGoogle Scholar
  157. van Alen T, Claus H, Zahedi RP, Groh J, Blazyca H, Lappann M, Sickmann A, Vogel U (2010) Comparative proteomic analysis of biofilm and planktonic cells of Neisseria meningitidis. Proteomics 10(24):4512–4521PubMedCrossRefGoogle Scholar
  158. Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8(5):431–433PubMedPubMedCentralCrossRefGoogle Scholar
  159. Vinella D, Albrecht C, Cashel M, D’Ari R (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56(4):958–970PubMedCrossRefGoogle Scholar
  160. von Gotz F, Haussler S, Jordan D, Saravanamuthu SS, Wehmhoner D, Strussmann A, Lauber J, Attree I, Buer J, Tummler B, Steinmetz I (2004) Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 186(12):3837–3847, Epub 04 June 2004CrossRefGoogle Scholar
  161. Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41(6):1352–1358PubMedPubMedCentralGoogle Scholar
  162. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576PubMedPubMedCentralCrossRefGoogle Scholar
  163. Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323, Epub 25 Dec 2002PubMedPubMedCentralCrossRefGoogle Scholar
  164. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346, Epub 11 Oct 2005PubMedCrossRefGoogle Scholar
  165. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70(10):6188–6196PubMedPubMedCentralCrossRefGoogle Scholar
  166. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864, Epub 26 Oct 2001PubMedCrossRefGoogle Scholar
  167. Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73(5):1481–1488PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79(23):7116–7121PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100(13):7907–7912, Epub 18 June 2003PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xu KD, Stewart PS, Xia F, Huang C-T, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039PubMedPubMedCentralGoogle Scholar
  171. Xu KD, Franklin MJ, Park CH, McFeters GA, Stewart PS (2001) Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199(1):67–71PubMedCrossRefGoogle Scholar
  172. Yamaguchi Y, Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin‚ Äìantitoxin systems. Nat Rev Microbiol 9(11):779–790PubMedCrossRefGoogle Scholar
  173. Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T (1993) Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 37(9):1749–1755, Epub 01 Sept 1993PubMedPubMedCentralCrossRefGoogle Scholar
  174. Yeom J, Imlay JA, Park W (2010) Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285(29):22689–22695PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci 96(7):4028–4033PubMedPubMedCentralCrossRefGoogle Scholar
  176. Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O’Toole GA (2012) In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. J Antimicrob Chemother 67(11):2673–2681, Epub 31 July 2012PubMedPubMedCentralCrossRefGoogle Scholar
  177. Zegans ME, Wozniak D, Griffin E, Toutain-Kidd CM, Hammond JH, Garfoot A, Lam JS (2012) Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 56(8):4112–4122PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zeiler HJ (1985) Evaluation of the in vitro bactericidal action of ciprofloxacin on cells of Escherichia coli in the logarithmic and stationary phases of growth. Antimicrob Agents Chemother 28(4):524–527, Epub 01 Oct 1985PubMedPubMedCentralCrossRefGoogle Scholar
  179. Zhang L, Mah T-F (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190(13):4447–4452PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah T-F (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 8(4):e61625PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463, Epub 22 Mar 2001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MedicineMcGill UniversityMontrealCanada
  2. 2.Research Institute of McGill University Health CentreMontrealCanada

Personalised recommendations