Skip to main content

Cytoplasm: Translational Apparatus

  • Living reference work entry
  • First Online:
Molecular Biology
  • 564 Accesses

Abstract

Components of the translational machinery

Key steps in initiation, elongation, and termination

Regulation of translation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol. 2012;19:568–76.

    Article  CAS  PubMed  Google Scholar 

  • Alekhina OM, Vassilenko KS. Translation initiation in eukaryotes: versatility of the scanning model. Biochemistry (Mosc). 2012;77:1465–77.

    Article  CAS  Google Scholar 

  • Andreou AZ, Klostermeier D. The DEAD-box helicase eIF4A: paradigm or the odd one out? RNA Biol. 2012;10:19–32.

    Article  PubMed  Google Scholar 

  • Browning KS. Plant translation initiation factors: it is not easy to be green. Biochem Soc Trans. 2004;32:589–91.

    Article  CAS  PubMed  Google Scholar 

  • Browning KS, Gallie DR, Hershey JWB, Hinnebusch AG, Maitra U, Merrick WC, Norbury C. Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends Biochem Sci. 2001;26:284.

    Article  CAS  PubMed  Google Scholar 

  • Byrne ME. A role for the ribosome in development. Trends Plant Sci. 2009;14:512–9.

    Article  CAS  PubMed  Google Scholar 

  • Carroll AJ. The Arabidopsis cytosolic ribosomal proteome: from form to function. Front Plant Sci. 2013;4:32–56.

    PubMed Central  PubMed  Google Scholar 

  • Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol. 2012;4:55–70.

    Article  Google Scholar 

  • Echevarria-Zomeno S, Yanguez E, Fernandez-Bautista N, Castro-Sanz AB, Ferrando A, Castellano MM. Regulation of translation initiation under biotic and abiotic stresses. Int J Mol Sci. 2013;14:4670–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallie DR. Translational control in plants and chloroplasts. In: Translational control in biology and medicine, vol 26. 2007. p. 747–74

    Google Scholar 

  • Gibson TJ. RACK1 research – ships passing in the night? FEBS Lett. 2012;586:2787–9.

    Article  CAS  PubMed  Google Scholar 

  • Goss DJ, Kleiman FE. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip Rev RNA. 2013;4:167–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Jin Z, Yang X, Li JF, Chen JG. Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. Plant Signal Behav. 2011;6:766–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinnebusch AG. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev. 2011;75:434–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4:29–54.

    Article  Google Scholar 

  • Horiguchi G, Van LM, Candela H, Micol JL, Tsukaya H. Ribosomes and translation in plant developmental control. Plant Sci. 2012;191–192:24–34.

    Article  PubMed  Google Scholar 

  • Hunt AG, Xing D, Li QQ. Plant polyadenylation factors: conservation and variety in the polyadenylation complex in plants. BMC Genomics. 2012;13:641–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Immanuel TM, Greenwood DR, MacDiarmid RM. A critical review of translation initiation factor eIF2α kinases in plants–regulating protein synthesis during stress. Funct Plant Biol. 2012;39:717–35.

    Article  CAS  Google Scholar 

  • Jackson RJ. The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol. 2012;4:89–108.

    Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV. Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol. 2012;86:45–93.

    Article  CAS  PubMed  Google Scholar 

  • Jennings MD, Pavitt GD. eIF5 is a dual function GAP and GDI for eukaryotic translational control. Small GTPases. 2010;1:118–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiang J, Laliberte JF. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr Opin Virol. 2011;1:347–54.

    Article  CAS  PubMed  Google Scholar 

  • Marintchev A. Roles of helicases in translation initiation: a mechanistic view. Biochim Biophys Acta. 2013;1829:799–809.

    Article  CAS  PubMed  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey JWB, eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Melnikov S, Ben-Shem A, Garreaude LN, Jenner L, Yusupova G, Yusupov M. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 2012;19:560–7.

    Article  CAS  PubMed  Google Scholar 

  • Muench DG, Zhang C, Dahodwala M. Control of cytoplasmic translation in plants. Wiley Interdiscip Rev RNA. 2012;3:178–94.

    Article  CAS  PubMed  Google Scholar 

  • Munoz A, Castellano MM. Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among eukaryotes? Comp Funct Genomics. 2012;2012:406357–65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicholson BL, White KA. 3′ Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr Opin Virol. 2011;1:373–80.

    Article  CAS  PubMed  Google Scholar 

  • Robaglia C, Thomas M, Meyer C. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol. 2012;15:301–7.

    Article  CAS  PubMed  Google Scholar 

  • Safer B. Nomenclature of initiation, elongation and termination factors for translation in eukaryotes. Eur J Biochem. 1989;186:1–3.

    Article  Google Scholar 

  • Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3:543–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon AE, Miller WA. 3′ Cap-independent translation enhancers of plant viruses. Annu Rev Microbiol. 2013;67:21–42.

    Article  CAS  PubMed  Google Scholar 

  • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Syed NH, Kalyna M, Marquez Y, Barta A, Brown JW. Alternative splicing in plants–coming of age. Trends Plant Sci. 2012;17:616–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011;2:277–98.

    Article  CAS  PubMed  Google Scholar 

  • Valasek LS. ‘Ribozoomin’–translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci. 2012;13:305–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang A, Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol. 2012;13:795–803.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Hwang J, Oh CS, Kang BC. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology. 2013;439:105–14.

    Article  CAS  PubMed  Google Scholar 

  • Juntawong P, Bailey-Serres J. Dynamic light regulation of translation status in Arabidopsis thaliana. Front Plant Sci. 2012;3:66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick RM, Browning KS. The eIF4F and eIFiso4F complexes of plants: an evolutionary perspective. Comp Funct Genomics. 2012;2012:287814.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosado A, Li R, van de Van W, Hsu E, Raikhel NV. Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc Natl Acad Sci U S A. 2012;109:19537–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schepetilnikov M, Dimitrova M, Mancera-Martinez E, Geldreich A, Keller M, Ryabova LA. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 2013;32:1087–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The research in Dr. Browning’s laboratory is supported by grants from the National Science Foundation (MCB1052530 and Arabidopsis 2010S-0000335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen S. Browning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Browning, K.S. (2014). Cytoplasm: Translational Apparatus. In: Howell, S. (eds) Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0263-7_8-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0263-7_8-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-0263-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics