Skip to main content

Nucleus and Genome: DNA Recombination and Repair

  • Living reference work entry
  • First Online:
Molecular Biology

Abstract

Damage to the genetic information of a cell can be caused by a variety of internal and external sources. As DNA damage can lead to mutations and eventually cell death, these lesions need to be repaired efficiently. Cells harbor many different and evolutionarily conserved pathways for their repair which can be utilized depending on the respective type of DNA damage. These different mechanisms make up a tightly regulated network needed for the maintenance of genomic stability. For some specific kinds of DNA damage, means of direct enzymatic reversal have been developed throughout evolution, for example the repair of UV radiation-induced photoproducts. Damaged bases or nucleotide modifications can be repaired through the base excision pathway or the nucleotide excision pathway, respectively. When replicative DNA polymerases incorporate the non-matching nucleotides, the so-called mismatch repair pathway is used to repair non-complementary bases in the DNA helix. There are also different damage tolerance and repair pathways employed when replication forks meet damaged DNA. In order to repair the most toxic DNA lesions – double strand breaks (DSBs) – cells have a number of different repair pathways available. The outcome of these ways to repair double strand breaks can vary enormously in respect of the genetic information. It can be conservative if homologous recombination is applied or non-conservative if nonhomologous end-joining or single-strand annealing is used for repair. These DSB repair pathways also form the basis of several new techniques for genome engineering, a field with tremendous potential for basic research and agronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baute J, Depicker A. Base excision repair and its role in maintaining genome stability. Crit Rev Biochem Mol Biol. 2008;43:239–76.

    Article  CAS  PubMed  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 2011;62:335–64.

    Article  CAS  PubMed  Google Scholar 

  • Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF. The eukaryotic nucleotide excision repair pathway. Biochimie. 2003;85:1083–99.

    Article  CAS  PubMed  Google Scholar 

  • Dalhus B, Laerdahl JK, Backe PH, Bjørås M. DNA base repair–recognition and initiation of catalysis. FEMS Microbiol Rev. 2009;33:1044–78.

    Article  CAS  PubMed  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH. Molecular mechanism of nucleotide excision repair. Genes Dev. 1999;13:768–85.

    Article  PubMed  Google Scholar 

  • Fortini P, Pascucci B, Parlanti E, D'Errico M, Simonelli V, et al. The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie. 2003;85:1053–71.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Diaz M, Bebenek K. Multiple functions of DNA polymerases. CRC Crit Rev Plant Sci. 2007;26:105–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goosen N, Moolenaar GF. Repair of UV damage in bacteria. DNA Repair (Amst). 2008;7:353–79.

    Article  CAS  Google Scholar 

  • He XJ, Chen T, Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011;21:442–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7:335–46.

    Article  CAS  PubMed  Google Scholar 

  • Knoll A, Puchta H. The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. J Exp Bot. 2011;62:1565–79.

    Article  CAS  PubMed  Google Scholar 

  • Kunz BA, Anderson HJ, Osmond MJ, Vonarx EJ. Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutagen. 2005;45:115–27.

    Article  CAS  PubMed  Google Scholar 

  • Mannuss A, Trapp O, Puchta H. Gene regulation in response to DNA damage. Biochim Biophys Acta. 2012;1819:154–65.

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 2013. doi:10.1111/tpj.12338.

    PubMed  Google Scholar 

  • Roldan-Arjona T, Ariza RR. Repair and tolerance of oxidative DNA damage in plants. Mutat Res. 2009;681:169–79.

    Article  CAS  PubMed  Google Scholar 

  • Schuermann D, Molinier J, Fritsch O, Hohn B. The dual nature of homologous recombination in plants. Trends Genet. 2005;21:172–81.

    Article  CAS  PubMed  Google Scholar 

  • Spampinato CP, Gomez-Casati DF. Research on plants for the understanding of diseases of nuclear and mitochondrial origin. J Biomed Biotechnol 2012: 836196

    Google Scholar 

  • Tuteja N, Ahmad P, Panda BB, Tuteja R. Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases. Mutat Res. 2009;681:134–49.

    Article  CAS  PubMed  Google Scholar 

  • Vonarx EJ, Mitchell HL, Karthikeyan R, Chatterjee I, Kunz BA. DNA repair in higher plants. Mutat Res. 1998;400:187–200.

    Article  CAS  PubMed  Google Scholar 

  • Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett. 2012;327:73–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. New Phytol. 2011;192:805–22.

    Article  CAS  PubMed  Google Scholar 

  • Weber S. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochim Biophys Acta. 2005;1707:1–23.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Readings

  • Aguilera A, Rothstein R. Molecular genetics of recombination. Berlin/New York: Springer; 2007.

    Book  Google Scholar 

  • Friedberg EC, Elledge SJ, Lehmann AR. DNA repair, mutagenesis, and other responses to DNA damage: a subject collection from Cold Spring Harbor perspectives in biology. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2013.

    Google Scholar 

  • Friedberg EC, Walker GC, Siede W. DNA repair and mutagenesis. Washington, DC: ASM Press; 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Schröpfer, S., Knoll, A., Trapp, O., Puchta, H. (2014). Nucleus and Genome: DNA Recombination and Repair. In: Howell, S. (eds) Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0263-7_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0263-7_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-0263-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics