Skip to main content

Signaling: Brassinosteroid Signaling

  • Living reference work entry
  • First Online:
Molecular Biology

Introduction

Plants respond to internal developmental cues as well as external environmental factors by activating signal transduction pathways that regulate growth and development, metabolism, and homeostasis. Protein receptors perceive specific ligands resulting in a cascade of biochemical events that often culminates with changes in gene expression. The newly synthesized gene products then act to alter cell size, number, shape, and function, which ultimately can lead to organ initiation, patterning, and morphogenesis. Thus, specific ligand/receptor interactions, often at the cell surface, regulate physiological processes and developmental programs through signaling pathways that alter nuclear gene expression. Intermediate components of the signaling pathway are required to relay information from signal perception to changes in gene expression. One of the most common signaling mechanisms in both plants and animals is reversible phosphorylation of Ser, Thr, and/or Tyr residues in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arnaud N, Laufs P. Plant development: brassinosteroids go out of bounds. Curr Biol. 2013;23:R152–4.

    Article  CAS  PubMed  Google Scholar 

  • Cano-Delgado AI, Blazquez MA. Spatial control of plant steroid signaling. Trends Plant Sci. 2013;18:235–6.

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 2009;14:535–41.

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell. 2011a;23:1219–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clouse SD. Brassinosteroids. Arabidopsis Book. 2011b;9:e0151.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fridman Y, Savaldi-Goldstein S. Brassinosteroids in growth control: how, when and where. Plant Sci. 2013;209:24–31.

    Article  CAS  PubMed  Google Scholar 

  • Gruszka D. The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci. 2013;14:8740–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gudesblat GE, Russinova E. Plants grow on brassinosteroids. Curr Opin Plant Biol. 2011;14:530–7.

    Article  CAS  PubMed  Google Scholar 

  • Gudesblat GE, Betti C, Russinova E. Brassinosteroids tailor stomatal production to different environments. Trends Plant Sci. 2012;17:685–7.

    Article  CAS  PubMed  Google Scholar 

  • Jaillais Y, Vert G. Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nat Cell Biol. 2012;14:788–90.

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Zhang C, Wang X. Ligand perception, activation, and early signaling of plant steroid receptor BRI1. J Integr Plant Biol. 2013;55:1198–211.

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol. 2010;61:681–704.

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Cai G, Li D. Recent insights into brassinosteroid signaling in plants: its dual control of plant immunity and stomatal development. Mol Plant. 2012;5:1179–81.

    Article  CAS  PubMed  Google Scholar 

  • Li J. Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol. 2010a;13:509–14.

    Article  CAS  PubMed  Google Scholar 

  • Li J. Regulation of the nuclear activities of brassinosteroid signaling. Curr Opin Plant Biol. 2010b;13:540–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li QF, He JX. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Signal Behav. 2013;8:e24686.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oh MH, Clouse SD, Huber SC. Tyrosine phosphorylation in brassinosteroid signaling. Plant Signal Behav. 2009;4:1182–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serna L. What causes opposing actions of brassinosteroids on stomatal development? Plant Physiol. 2013;162:3–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY. Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet. 2012;46:701–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY. Brassinosteroid signalling. Development. 2013;140:1615–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Bucherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH, Aker J, van Hoek A, Albrecht C, Borst JW, de Vries SC. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiol. 2013;162:1911–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17:594–605.

    Article  CAS  PubMed  Google Scholar 

  • Cutler HG, Yokota T, Adam G. Brassinosteroids: chemistry, bioactivity, & applications, vol. 474. Washington, DC: American chemical Society; 1991.

    Google Scholar 

  • Hao J, Yin Y, Fei SZ. Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep. 2013;32:1017–30.

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ahmad A. Brassinosteroids: bioactivity and crop productivity. Dordrecht: Kluwer; 2003.

    Book  Google Scholar 

  • Hayat S, Ahmad A. Brassinosteroids: a class of plant hormone. Dordrecht: Springer; 2011.

    Book  Google Scholar 

  • Kutschera U, Wang ZY. Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot. 2012;63:3511–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Li Y, Chen S, An L. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot. 2010;61:4221–30.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai A, Yokota T, Clouse SD. Brassinosteroids: steroidal plant hormones. Tokyo: Springer; 1999.

    Google Scholar 

  • Santiago J, Henzler C, Hothorn M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science. 2013;341:889–92.

    Article  CAS  PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. Plant Cell. 2012;24:842–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant. 2013;6:1738–57.

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Li J. Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol. 2012;54:746–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Clouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Clouse, S. (2014). Signaling: Brassinosteroid Signaling. In: Howell, S. (eds) Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0263-7_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0263-7_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-0263-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics