Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Information Filtering

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_951-2



Information retrieval (IR) and information filtering (IF) are strongly related [3,5]. Information retrieval indexes a large set of documents and when a user asks a query, answers are extracted out of this set. Information filtering processes a stream of documents and for each document arriving in the system a comparison is made with one or more filtering profiles provided by users and in case of a match the document is sent to the user who created the profile. Applications of information filtering are found in competitive intelligence or technology watch. Another way of filtering is to send the document to the user only if the match is negative. This is useful for applications such as child protection or anti-spam.

Another difference is that IR queries are short, for immediate use, with answers expected as if in a conversational mode (in less than few seconds). For Information filtering, queries are...

This is a preview of subscription content, log in to check access

Recommended Reading

  1. 1.
    Allan J. Incremental relevance feedback for information filtering. In: Proceedings 19th annual international ACM SIGIR conference on research and development in information retrieval. 1996. p. 18–22.Google Scholar
  2. 2.
    Alsaffar AH, Deogun J, Sever H. Optimal queries in information filtering. In: Proceedings 12th international symposium foundations intelligent systems, vol 1932. 2000. p. 435–43. In Proceedings of the LNCS.Google Scholar
  3. 3.
    Belkin NJ, Croft WB. Information filtering and information retrieval: two sides of the same coin? Commun ACM. 1992;35(12):29–38.CrossRefGoogle Scholar
  4. 4.
    Brandenberg W, Fallon HC, Hensley CB, Savage TR, Sowarby AJ. The SDI-2 system. IBM advance system development division report, Yorktown-Heights, 17–031. 1961.Google Scholar
  5. 5.
    Hanani U, Shapira B, Shoval P. Information filtering: overview of issues, research and systems. User Model User Adapt Inter. 2001;11:203–59. Springer NetherlandCrossRefMATHGoogle Scholar
  6. 6.
    Rocchio JJ. Chapter XIV. Relevance feedback in information retrieval. In: Salton G, editor. The SMART retrieval system: experiments in automatic document processing. Englewood Cliffs: Prentice-Hall; 1971. p. 313–23.Google Scholar
  7. 7.
    Soboroff I, Robertson S. Building a filtering test collection for TREC 2002. In: Proceedings 26th annual international ACM SIGIR conference on research and development in information retrieval. 2003. p. 243–50.Google Scholar
  8. 8.
    Van Rijsbergen K. Information retrieval. 2nd ed. London: Butterworworths; 1979.MATHGoogle Scholar
  9. 9.
    Yang Y. An evaluation of statistical approach to text categorization, report CMU-CS-97-127, Carnegie Mellon University; 1997.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.CEA LISTFontenay-auxRosesFrance