Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Spatial Datawarehousing

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_80810-1

Definition

Business intelligence (BI) systems collect large amounts of data, transform them to a form that can be used to analyze organizational behavior, and store them in a common repository called a data warehouse (DW). A DW is usually designed following the multidimensional model, which represents data as facts that can be analyzed along a collection of dimensions, composed of levels conforming aggregation hierarchies.

Over the years, spatial data have been increasingly used in many application domains, like public administration, transportation networks, environmental systems, and public health, among others. Spatial data can represent geographic objects (e.g., mountains, cities), geographic phenomena (e.g., temperature, precipitation), and even data located in other spatial frames such as a human body or a house.

Similarly to conventional databases, spatial databases are typically used for operational applications, rather than to support data analysis tasks. Spatial DWs (SDWs)...

Keywords

Spatial Data Road Segment Data Warehouse Spatial Object Spatiotemporal Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ahmed TO, Miquel M. Multidimensional structures dedicated to continuous spatiotemporal phenomena. In: Proceedings of the 22nd British National Conference on Databases, BNCOD 2005. Lecture Notes in Computer Science 3567. Berlin/New York: Springer; 2005. p. 29–40.Google Scholar
  2. 2.
    Bédard Y, Merrett T, Han J. Fundaments of spatial data warehousing for geographic knowledge discovery. In: Miller H, Han J, editors, Geographic data mining and knowledge discovery. London: Taylor & Francis; 2001. p. 53–73.CrossRefGoogle Scholar
  3. 3.
    Bimonte S, Miquel M. When spatial analysis meets OLAP: multidimensional model and operators. Int J Data Wareh Min. 2010;6(4):33–60.CrossRefGoogle Scholar
  4. 4.
    Bimonte S, Tchounikine A, Miquel M. Towards a spatial multidimensional model. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, DOLAP’05. Bremen. ACM Press; 2005. p. 39–46.Google Scholar
  5. 5.
    Gómez L, Gómez S, Vaisman A. Analyzing continuous fields with OLAP cubes. In: Proceedings of the 14th ACM International Workshop on Data Warehousing and OLAP, DOLAP’11. Glasgow. ACM Press; 2011. p. 89–94.Google Scholar
  6. 6.
    Gómez L, Gómez S, Vaisman A. A generic data model and query language for spatiotemporal OLAP cube analysis. In: Proceedings of the 15th International Conference on Extending Database Technology, EDBT 2012. Berlin. ACM Press; 2012. p. 300–11.Google Scholar
  7. 7.
    Gómez L, Gómez S, Vaisman A. Modeling and querying continuous fields with OLAP cubes. Int J Data Wareh Min. 2013;9(3):22–45.CrossRefGoogle Scholar
  8. 8.
    Gómez L, Vaisman A, Zimányi E. Physical design and implementation of spatial data warehouses supporting continuous fields. In: Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery, DaWaK’10; Bilbao. Lecture Notes in Computer Science 6263. Springer; 2010. p. 25–39.Google Scholar
  9. 9.
    Jensen CS, Klygis A, Pedersen TB, Timko I. Multidimensional data modeling for location-based services. In: Proceedings of the 10th ACM Symposium on Advances in Geographic Information Systems, ACM-GIS’02; McLean. ACM Press; 2002. p. 55–61.Google Scholar
  10. 10.
    Malinowski E, Zimányi E. Representing spatiality in a conceptual multidimensional model. In: Proceedings of the 12th ACM Symposium on Advances in Geographic Information Systems, ACM-GIS’04; Washington, DC. ACM Press; 2004. p. 12–21.Google Scholar
  11. 11.
    Malinowski E, Zimányi E. Logical representation of a conceptual model for spatial data warehouses. GeoInformatica 2007;11(4):431–57.CrossRefGoogle Scholar
  12. 12.
    Malinowski E, Zimányi E. Advanced data warehouse design: from conventional to spatial and temporal applications. Berlin/Heidelberg: Springer; 2008.MATHGoogle Scholar
  13. 13.
    Mendelzon A, Vaisman A. Time in multidimensional databases. In: Rafanelli M, editor. Multidimensional databases: problems and solutions. Hershey: Idea Group; 2003. p. 166–99.CrossRefGoogle Scholar
  14. 14.
    Parent C, Spaccapietra S, Zimányi E. Conceptual modeling for traditional and spatio-temporal applications: the MADS approach. Berlin: Springer; 2006.MATHGoogle Scholar
  15. 15.
    Pedersen T, Jensen C, Dyreson C. A foundation for capturing and querying complex multidimensional data. Inf Syst. 2001;26(5):383–423.CrossRefMATHGoogle Scholar
  16. 16.
    Rivest S, Bédard Y, Marchand P. Toward better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica 2001;55(4):539–55.Google Scholar
  17. 17.
    Shanmugasundaram J, Fayyad U, Bradley P. Compressed data cubes for OLAP aggregate query approximation on continuous dimensions. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press; 1999. p. 223–32.Google Scholar
  18. 18.
    Stefanovic N, Han J, Koperski K. Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans Knowl Data Eng. 2000;12(6):938–58.CrossRefGoogle Scholar
  19. 19.
    Vaisman A, Zimányi E. A multidimensional model representing continuous fields in spatial data warehouses. In: Proceedings of the 17th ACM SIGSPATIAL Symposium on Advances in Geographic Information Systems, ACM-GIS’09. New York: ACM Press; 2009. p. 168–77.Google Scholar
  20. 20.
    Vaisman A, Zimányi E. Data warehouses: next challenges. In: Aufare MA, Zimányi E, editors. Tutorial Lectures of the First European Business Intelligence Summer School, eBISS 2011; Paris. Lecture Notes in Business Information Processing 96. Springer; 2011. p. 1–26.Google Scholar
  21. 21.
    Vaisman A, Zimányi E. Trajectory data warehouses. In: Renso C, Spaccapietra S, Zimányi E, editors. Mobility data: modeling, management, and understanding. New York: Cambridge University Press; 2013. p. 62–82.CrossRefGoogle Scholar
  22. 22.
    Vaisman A, Zimányi E. Data warehouse systems: design and implementation. Berlin: Springer; 2014.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Instituto Tecnológico de Buenos AiresBuenos AiresArgentina
  2. 2.CoDEUniversité Libre de BruxellesBrusselsBelgium