Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Entity Retrieval

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_80724-1

Synonyms

Definition

Entities are uniquely identifiable objects or things (such as persons, organizations, and places), characterized by their types, attributes, and relationships to other entities. Entity retrieval refers to a variety of search tasks where the user is presented with specific entities, or properties of entities, instead of documents, in response to a search query.

The area of entity retrieval has a number of unique characteristics that makes it challenging and sets it apart from standard document retrieval. First, unlike documents, entities are not necessarily directly represented as retrievable units but need to be recognized and identified through occurrences in documents. Information about a given entity has to be collected and aggregated from multiple documents and even multiple collections and potentially combined with structured data sources. Second, there is more structure (or references to structures) available than in standard document retrieval:...

This is a preview of subscription content, log in to check access

Recommended Reading

  1. 1.
    Balog K. Semistructured data search. In: Ferro N, editor. PROMISE winter school 2013. Lecture notes in computer science, vol. 8173. Berlin/Heidelberg: Springer; 2014. p. 74–96.Google Scholar
  2. 2.
    Balog K, Neumayer R. Hierarchical target type identification for entity-oriented queries. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, ACM; 2012. p. 2391–4.Google Scholar
  3. 3.
    Balog K, Azzopardi L, de Rijke M. A language modeling framework for expert finding. Inf Process Manag. 2009;45:1–19.CrossRefGoogle Scholar
  4. 4.
    Balog K, de Vries AP, Serdyukov P, Thomas P, Westerveld T. Overview of the TREC 2009 entity track. In: Proceedings of the 18th Text REtrieval Conference. NIST Special Publication; 2010.Google Scholar
  5. 5.
    Balog K, Bron M, De Rijke M. Query modeling for entity search based on terms, categories, and examples. ACM Trans Inf Syst. 2011;29(4):22:1–22:31.Google Scholar
  6. 6.
    Balog K, Fang Y, de Rijke M, Serdyukov P, Si L. Expertise retrieval. Found Trends Inf Retr. 2012;6(2–3):127–256.CrossRefGoogle Scholar
  7. 7.
    Bast H, Bäurle F, Buchhold B, Haussmann E. A case for semantic full-text search. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search. ACM; 2012.Google Scholar
  8. 8.
    Blanco R, Mika P, Vigna S. Effective and efficient entity search in RDF data. In: Proceedings of the 10th International Conference on The Semantic Web. Springer; 2011. p. 83–97.Google Scholar
  9. 9.
    Blanco R, Halpin H, Herzig DM, Mika P, Pound J, Thompson HS, Tran T. Repeatable and reliable semantic search evaluation. Web Semant Sci Serv Agents World Wide Web. 2013;21(0):14–29.CrossRefGoogle Scholar
  10. 10.
    Bron M, Balog K, de Rijke M. Ranking related entities: components and analyses. In: 19th ACM International Conference on Information and Knowledge Management. ACM; 2010. p. 1079–88.Google Scholar
  11. 11.
    Craswell N, de Vries A, Soboroff I. Overview of the TREC-2005 enterprise track. In: Proceedings of the 14th Text REtrieval Conference. NIST Special Publication; 2006.Google Scholar
  12. 12.
    de Vries A, Vercoustre A-M, Thom JA, Craswell N, Lalmas M. Overview of the INEX 2007 entity ranking track. In: Focused access to XML documents, vol. 4862. Berlin/Heidelberg: Springer; 2008. p. 245–51.CrossRefGoogle Scholar
  13. 13.
    Demartini G, Firan CS, Iofciu T, Krestel R, Nejdl W. Why finding entities in Wikipedia is difficult, sometimes. Inf Retr. 2010;13(5):534–67.CrossRefGoogle Scholar
  14. 14.
    Fang Y, Si L, Mathur AP. Discriminative probabilistic models for expert search in heterogeneous information sources. Inf Retr. 2011;14(2):158–77.CrossRefGoogle Scholar
  15. 15.
    Kaptein R, Kamps J. Exploiting the category structure of Wikipedia for entity ranking. Artif Intell. 2013;194:111–29.CrossRefMATHGoogle Scholar
  16. 16.
    Kaptein R, Serdyukov P, De Vries A, Kamps J. Entity ranking using Wikipedia as a pivot. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM; 2010. p. 69–78.Google Scholar
  17. 17.
    Kim J, Xue X, Croft WB. A probabilistic retrieval model for semistructured data. In: Proceedings of the 31th European Conference on IR Research on Advances in Information Retrieval. Springer; 2009. p. 228–39.Google Scholar
  18. 18.
    Li X, Li C, Yu C. Entityengine: answering entity-relationship queries using shallow semantics. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM; 2010. p. 1925–6.Google Scholar
  19. 19.
    Lin T, Pantel P, Gamon M, Kannan A, Fuxman A. Active objects. In: Proceedings of the 21st International Conference on World Wide Web. ACM; 2012. p. 589–98.Google Scholar
  20. 20.
    Macdonald C, Ounis I. Voting for candidates: adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM; 2006. p. 387–96.Google Scholar
  21. 21.
    Neumayer R, Balog K, Nørvåg K. On the modeling of entities for ad-hoc entity search in the web of data. In: Proceedings of the 34th European Conference on Advances in Information Retrieval. Springer; 2012. p. 133–45.Google Scholar
  22. 22.
    Pérez-Agüera JR, Arroyo J, Greenberg J, Iglesias JP, Fresno V. Using BM25F for semantic search. In: Proceedings of the 3rd International Semantic Search Workshop. ACM; 2010. p. 1–8.Google Scholar
  23. 23.
    Pound J, Mika P, Zaragoza H. Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web. ACM; 2010. p. 771–80.Google Scholar
  24. 24.
    Sawant U, Chakrabarti S. Learning joint query interpretation and response ranking. In: Proceedings of the 22nd International Conference on World Wide Web; 2013. p. 1099–109.Google Scholar
  25. 25.
    Serdyukov P, Rode H, Hiemstra D. Modeling multi-step relevance propagation for expert finding. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM; 2008. p. 1133–42.Google Scholar
  26. 26.
    Vallet D, Zaragoza H. Inferring the most important types of a query: a semantic approach. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM; 2008. p. 857–8.Google Scholar
  27. 27.
    Vercoustre A-M, Pehcevski J, Thom JA. Using Wikipedia categories and links in entity ranking. In: Focused Access to XML Documents: 6th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2007). Lecture notes in computer science, vol. 4862. Springer: Heidelberg; 2008. p. 321–35.Google Scholar
  28. 28.
    Voorhees EM. The TREC question answering track. Nat Lang Eng. 2001;7(4):361–78.CrossRefGoogle Scholar
  29. 29.
    Wang Q, Kamps J, Camps GR, Marx M, Schuth A, Theobald M, Gurajada S, Mishra A. Overview of the INEX 2012 linked data track. In: Forner P, Karlgren J, Womser-Hacker C, editors. CLEF 2012 evaluation labs and workshop, online working notes; 2012.Google Scholar
  30. 30.
    Wang Q, Ramírez G, Marx M, Theobald M, Kamps J. Overview of the INEX 2011 data centric track. In: Geva S, Kamps J, Schenkel R, editors. Focused Retrieval of Content and Structure: 10th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2011). Lecture notes in computer science, vol. 7424. Springer; 2012.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.University of StavangerStavangerNorway

Section editors and affiliations

  • Jaap Kamps
    • 1
  1. 1.University of AmsterdamAmsterdamThe Netherlands