Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Graph OLAP

  • Zhengkui WangEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_80627-1



Graph OLAP (Online Analytical Processing) is classified into two different types: informational graph OLAP (I-OLAP) and topological graph OLAP (T-OLAP) [ 2]. Under I-OLAP, an aggregate graph G I is computed based on a set of graph snapshots G = { G 1,  G 2, . . ,  G N} where each snapshot is an attributed graph with the same set of objects in a real application. Note that the attributed graphs are the graphs where vertices and edges are associated with attributes as shown in Fig.  1. Intuitively, I-OLAP overlays G into a high-level graph G I where: (1) the vertices of G I are the same as any snapshot in G, and (2) the vertex/edge attributes attached to G I are calculated by aggregate functions over the attributes attached to G 1, G 2, …, G N. For instance, the author-paper graph in each year can be one snapshot. I-OLAP can overlay all the author-paper graphs in the last few years into one single graph by merging and aggregating the...
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chakrabarti D, Faloutsos C. Graph mining: laws, tools, and case studies. Series synthesis lectures on data mining and knowledge discovery. San Rafael: Morgan & Claypool Publishers; 2012.Google Scholar
  2. 2.
    Chen C, Yan X, Zhu F, Han J, Yu PS. Graph OLAP: towards online analytical processing on graphs. In: ICDM; Pisa. 2008. p. 103–12.Google Scholar
  3. 3.
    Chen C, Yan X, Zhu F, Han J, Yu P. Graph olap: a multidimensional framework for graph data analysis. Knowl Inf Syst. 2009;21(1):41–63.CrossRefGoogle Scholar
  4. 4.
    Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. In: OSDI; San Francisco. 2004; p. 137–50.Google Scholar
  5. 5.
    Gray J, Bosworth A, Layman A, Reichart D, Pirahesh H. Data cube: a relational aggregation operator generalizing group-by, crosstab, and sub-totals. In ICDE; New Orleans. 1996. p. 152–59.Google Scholar
  6. 6.
    Kampgen B, Harth A. Transforming statistical linked data for use in OLAP systems, I-SEMANTICS. 2011. p. 33–40.Google Scholar
  7. 7.
    Navlakha S, Rastogi R, Shrivastava N. Graph summarization with bounded error. In: SIGMOD Conference; Vancouver. 2008. p. 419–32.Google Scholar
  8. 8.
    Qu Q, Zhu F, Yan X, Han J, Yu PS, Li H. Efficient topological OLAP on information networks. In: DASFAA (1); Hong Kong. 2011. p. 389–403.Google Scholar
  9. 9.
    Tian Y, Hankins RA, Patel JM. Efficient aggregation for graph summarization. In: SIGMOD Conference; Vancouver. 2008. p. 567–80.Google Scholar
  10. 10.
    Trifonova TG. Warehousing and OLAP analysis of bibliographic data. Intell Inf Manag. 2011;3:109–97.Google Scholar
  11. 11.
    Wang Z, Chu Y, Tan K-L, Agrawal D, Abbadi AE, Xu X. Scalable data cube analysis over big data. In: CoRR. 2013. arXiv:1311.5663.Google Scholar
  12. 12.
    Wang Z, Fan Q, Wang H, Tan KL, Agrawal D, Abbadi AE. Pagrol: parallel graph OLAP over large-scale attributed graphs. In: ICDE. 2014. p. 496–507.Google Scholar
  13. 13.
    Zhao P, Li X, Xin D, Han J. Graph cube: on warehousing and OLAP multidimensional networks. In: SIGMOD; Athens. 2011. p. 853–64.Google Scholar
  14. 14.
    Zhou Y, Cheng H, Yu JX. Graph clustering based on structural attribute similarities. In: PVLDB. 2009. p. 718–29.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.InfoComm TechnologySingapore Institute of TechnologySingaporeSingapore

Section editors and affiliations

  • Kian-Lee Tan
    • 1
  1. 1.Dept. of Computer ScienceNational Univ. of SingaporeSingaporeSingapore