Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Visual Online Analytical Processing (OLAP)

  • Marc H. Scholl
  • Svetlana Mansmann
  • Matteo Golfarelli
  • Stefano Rizzi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_447-3



An umbrella term encompassing a new generation of online analytical processing (OLAP) end user tools for interactive ad hoc exploration of large multidimensional data volumes. Visual OLAP provides a comprehensive framework of advanced visualization techniques for representing the retrieved data set along with a powerful navigation and interaction scheme for specifying, refining, and manipulating the subset of interest. The concept emerged from the convergence of business intelligence (BI) techniques and the achievements in the areas of information visualization and visual analytics. Traditional OLAP frontends, designed primarily to support routine reporting and analysis, use visualization merely for expressive presentation of the data. In the visual OLAP approach, however, visualization plays the key role as the method of interactive query-driven analysis. Comprehensive...


Visualization Technique Visual Presentation Business Intelligence Data Cube Visual Metaphor 
This is a preview of subscription content, log in to check access

Recommended Reading

  1. 1.
    Keim DA, Krigel H-P. VisDB: database exploration using multidimensional visualization. IEEE Comput Graph Appl. 1994;14(5):40–9.CrossRefGoogle Scholar
  2. 2.
    Eick SG. Visualizing multi-dimensional data. ACM SIGGRAPH Comput Graph. 2000;34(1):61–7.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lee H-Y, Ong H-L. A new visualisation technique for knowledge discovery in OLAP. In: Proceedings of the first Pacific-Asia conference on knowledge discovery and data mining. 1997, p. 279–86.Google Scholar
  4. 4.
    Sifer M. A visual interface technique for exploring OLAP data with coordinated dimension hierarchies. In: Proceedings of the international conference on information and knowledge management. 2003, p. 532–35.Google Scholar
  5. 5.
    Hanrahan P, Stolte C, Mackinlay J. Visual analysis for everyone: understanding data exploration and visualization. Tableau Software Inc., 2007. White Paper, http://www.tableausoftware.com/docs/Tableau_Whitepaper.pdf
  6. 6.
    Stolte C, Tang D, Hanrahan P. Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans Visual Comput Graph. 2002;8(1):52–65.CrossRefGoogle Scholar
  7. 7.
    Middelfart M, Pedersen TB. The meta-morphing model used in TARGIT BI suite. In: Proceedings of the ER workshops. 2011, p. 364–70.Google Scholar
  8. 8.
    Russom P. Trends in data visualization software for business users. DM Review, May 2000.Google Scholar
  9. 9.
    Mansmann S, Scholl MH. Extending visual OLAP for handling irregular dimensional hierarchies. In: Proceedings of the 8th international conference data warehousing and knowledge discovery. 2006. p.~95–105.Google Scholar
  10. 10.
    Mansmann S, Scholl MH. Exploring OLAP aggregates with hierarchical visualization techniques. In: Proceedings of the 2007 ACM symposium on applied computing. 2007, p. 1067–73.Google Scholar
  11. 11.
    Maniatis A, Vassiliadis P, Skiadopoulos S, Vassiliou Y, Mavrogonatos G, Michalarias I. A presentation model & non-traditional visualization for OLAP. IJDWM. 2005;1(1):1–36.Google Scholar
  12. 12.
    Techapichetvanich K, Datta A. Interactive visualization for OLAP, Part III. In: Proceedings of the international conference on computational science and its applications. 2005. p. 206–14.Google Scholar
  13. 13.
    Tegarden DP. Business information visualization. Comm AIS. 1999;1(1):Article 4.Google Scholar
  14. 14.
    Golfarelli M, Graziani S, Rizzi S. Shrink: an OLAP operation for balancing precision and size of pivot tables. Data Knowl Eng. 2014;93:19–41.CrossRefGoogle Scholar
  15. 15.
    Cuzzocrea A, Saccà D, Serafino P. Semantics-aware advanced OLAP visualization of multi-dimensional data cubes. IJDWM. 2007;3(4):1–30.Google Scholar
  16. 16.
    Bellatreche L, Giacometti A, Marcel P, Mouloudi H, Laurent DA. Personalization framework for OLAP queries. In: Proceedings of the ACM 8th international workshop on data warehousing and OLAP. 2005. p. 9–18.Google Scholar
  17. 17.
    Rosling H, Rönnlund AR, Rosling O. New software brings statistics beyond the eye. In: Proceedings of the organisation for economic co-operation and development. 2006. p. 522–30.Google Scholar
  18. 18.
    Rivest S, Bédard Y, Marchand P. Toward better support for spatial decision making: defining the characteristics of spatial On-Line Analytical Processing (SOLAP). Geomatica. 2001;55(4):539–55.Google Scholar
  19. 19.
    Leonardi L, Orlando S, Raffaetà R, Roncato A, Silvestri C, Andrienko G, Andrienko N. A general framework for trajectory data warehousing and visual OLAP. GeoInformatica. 2014;18(2):273–312.CrossRefGoogle Scholar
  20. 20.
    Keim DA Exploring big data using visual analytics. In: Proceedings of the workshops EDBT/ICDT. 2014, p. 160.Google Scholar
  21. 21.
    Shneiderman B. Extreme visualization: squeezing a billion records into a million pixels. In: Proceedings of the international conference on management of data, 2008, p. 3–12.Google Scholar
  22. 22.
    Liu Z, Jiang B, Heer J. imMens: real-time visual querying of big data. Computer Graphics Forum. 32(3–4):421–30.Google Scholar
  23. 23.
    Bikakis N, Sellis T. Exploration and visualization in the web of big linked data: a survey of the state of the art. arXiv preprint arXiv:1601.08059; 2016.Google Scholar
  24. 24.
    Stoltec C, Tang D, Hanrahan P. Multiscale visualization using data cubes. IEEE Trans Visual Comput Graph. 2003;9(2):176–87.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Marc H. Scholl
    • 1
  • Svetlana Mansmann
    • 1
  • Matteo Golfarelli
    • 2
  • Stefano Rizzi
    • 2
  1. 1.University of KonstanzKonstanzGermany
  2. 2.DISI – University of BolognaBolognaItaly