Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Autonomous Replication

  • Cristiana Amza
  • Jin Chen
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_34-2

Definition

Autonomic database replication refers to dynamic allocation of servers to applications in shared server clusters, in such a way to meet per-application performance requirements. Autonomic database replication enables the service provider to efficiently multiplex data center resources across applications in order to save per-server costs related to human management, power, and cooling.

Historical Background

The concept of autonomic computing and the associated research area of automated, adaptive self-management in data centers were introduced by IBM as a grand challenge project in the early 2000s. Other companies, which have responded or have had similar proposals of their own, include Microsoft, Intel, Sun, and HP. Related industry efforts in this area have been on developing open standards for resource monitoring tools, e.g., as available on IBM’s Alphaworks (http://www.alphaworks.ibm.com...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Amza C, Cecchet E, Chanda A, Cox A, Elnikety S, Gil R, et al. Specification and implementation of dynamic web site benchmarks. In: 5th IEEE workshop on workload characterization, Austin; 2002.Google Scholar
  2. 2.
    Amza C, Cox AL, Zwaenepoel W. Conflict-aware scheduling for dynamic content applications. In: USITS’03: proceedings of the fifth USENIX symposium on internet technologies and systems. Berkeley: USENIX Association; 2003. p. 6–6.Google Scholar
  3. 3.
    Amza C, Cox AL, Zwaenepoel W. Distributed versioning: consistent replication for scaling back-end databases of dynamic content web sites. In: ACM/IFIP/USENIX international middleware conference, Rio de Janeiro; 2003. p. 282–304.Google Scholar
  4. 4.
    Bennani MN, Menasce DA. Resource allocation for autonomic data centers using analytic performance models. In: ICAC ’05: proceedings of the second international conference on automatic computing. Washington, DC: IEEE Computer Society; 2005. p. 229–40.Google Scholar
  5. 5.
    Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and recovery in database systems. Reading: Addison-Wesley; 1987.Google Scholar
  6. 6.
    Chen J, Soundararajan G, Amza C. Autonomic provisioning of backend databases in dynamic content web servers. In: Proceedings of the third international conference on autonomic computing (ICAC 2006), Dublin; 2006. p. 123–33.Google Scholar
  7. 7.
    Chen J, Soundararajan G, Ghanbari S, Amza C. Model ensemble tools for self-management in data centers. In: 8th international workshop on self-managing database systems (SMDB 2013) ICDE workshop, Brisbane; 8–12 Apr 2013. p. 36–43.Google Scholar
  8. 8.
    Coleman K, Norris J, Candea G, Fox A. Oncall: defeating spikes with a free-market server cluster. In: Proceedings of the 1st international conference on autonomic computing (ICAC), New York; 2004.Google Scholar
  9. 9.
    Duan S, Thummala V, Babu S. Tuning database configuration parameters with iTuned. Proc VLDB Endow. 2009;2:1246–57.CrossRefGoogle Scholar
  10. 10.
    Ganapathi A, Kuno HA, Dayal U, Wiener JL, Fox A, Jordan MI, et al. Predicting multiple metrics for queries: better decisions enabled by machine learning. In: proceedings of the 25th international conference on data engineering (ICDE’09), Shanghai; 2009. p. 592–603.Google Scholar
  11. 11.
    Ghanbari S, Soundararajan G, Chen J, Amza C. Adaptive learning of metric correlations for temperature-aware database provisioning. In: ICAC ’07: proceedings of the fourth international conference on autonomic computing. Washington, DC: IEEE Computer Society; 2007. p. 26.Google Scholar
  12. 12.
    Gulati A, Kumar C, Ahmad I, Kumar K. BASIL: automated IO load balancing across storage devices. In: Proceedings of the 8th USENIX conference on file and storage technologies (FAST’10), San Jose; 2010. p. 169–82.Google Scholar
  13. 13.
    IBM Corporation: Automated provisioning of resources for data center environments. http://www-306.ibm.com/software/tivoli/solutions/provisioning/ (2003).
  14. 14.
    Karve A, Kimbrel T, Pacifici G, Spreitzer M, Steinder M, Sviridenko M, et al. Dynamic placement for clustered web applications. In: WWW ’06: proceedings of the 15th international conference on World Wide Web. New York: ACM; 2006. p. 595–604.CrossRefGoogle Scholar
  15. 15.
    Soundararajan G, Amza C. Reactive provisioning of backend databases in shared dynamic content server clusters. ACM Trans Auton Adapt Syst (TAAS). 2006;1(2):151–88.CrossRefGoogle Scholar
  16. 16.
    Soundararajan G, Lupei D, Ghanbari S, Popescu AD, Chen J, Amza C. Dynamic resource allocation for database servers running on virtual storage. In: Proceedings of the 7th USENIX conference on file and storage technologies (FAST’09), San Francisco; 2009. p. 71–84.Google Scholar
  17. 17.
    Tesauro G, Das R, Walsh WE, Kephart JO. Utility-function-driven resource allocation in autonomic systems. In: International conference on autonomic computing (ICAC), Seattle; 2005. p. 70–7.Google Scholar
  18. 18.
    Tesauro G, Jong NK, Das R, Bennani MN. On the use of hybrid reinforcement learning for autonomic resource allocation. Clust Comput. 2007;10(3):287–99.CrossRefGoogle Scholar
  19. 19.
    Urgaonkar B, Pacifici G, Shenoy PJ, Spreitzer M, Tantawi AN. An analytical model for multi-tier internet services and its applications. In: Proceedings of the international conference on measurements and modeling of computer systems (SIGMETRICS’05), Banff; 2005. p. 291–302.Google Scholar
  20. 20.
    Wang M, Au K, Ailamaki A, Brockwell A, Faloutsos C, Ganger GR. Storage device performance prediction with CART models. In: Proceedings of the international conference on measurements and modeling of computer systems (SIGMETRICS’04), Las Vegas; 2004. p. 412–13.Google Scholar
  21. 21.
    Wu S, Kemme B. Postgres-R(SI): combining replica control with concurrency control based on snapshot isolation. In: ICDE ’05: proceedings of the 21stbreak international conference on data engineering. Washington, DC: IEEE Computer Society; 2005. p. 422–33.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada
  2. 2.Computer Engineering Research GroupUniversity of TorontoTorontoCanada

Section editors and affiliations

  • Bettina Kemme
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada