Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Schema Mapping Composition

  • Wang-Chiew Tan
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_1467-2



A schema mapping (or mapping) is a triple = ( S 1, S 2, Σ), where S 1 and S 2 are relational schemas with no relation symbols in common and Σ is a set of formulas of some logical formalism over ( S 1, S 2). An instance of is a pair ( I, J) where I is an instance of S 1 and J is an instance of S 2 such that ( I, J) satisfies every formula in the set Σ. The set of all instances of is denoted as Inst .


Composition Operator Function Symbol Atomic Formula Successive Mapping Relation Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Beeri C, Vardi MY. A proof procedure for data dependencies. J ACM. 1984;31(4):718–41.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bernstein PA, Halevy AY, Pottinger R. A vision of management of complex models. ACM SIGMOD Rec. 2000;29(4):55–63.CrossRefGoogle Scholar
  3. 3.
    Bernstein PA, Green TJ, Melnik S, Nash A. Implementing mapping composition. In: Proceedings of the 32nd international conference on very large data bases. 2006. p. 55–66.Google Scholar
  4. 4.
    Dessloch S, Hernández M, Wisnesky R, Radwan A, Zhou J. Orchid: integrating schema mapping and ETL. In: Proceedings of 24th international conference on data engineering. 2008. p. 1307–16.Google Scholar
  5. 5.
    Fagin R. Generalized first-order spectra and polynomial-time recognizable sets. In: Karp RM, editor. Complexity of computation, SIAM-AMS Proceedings, vol. 7. 1974. p. 43–73.Google Scholar
  6. 6.
    Fagin R. Inverting schema mappings. ACM Trans Database Syst. 2007;32(4):24.CrossRefMATHGoogle Scholar
  7. 7.
    Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query answering. Theor Comput Sci. 2005a;336(1):89–124.Google Scholar
  8. 8.
    Fagin R, Kolaitis PG, Popa L, Tan WC. Composing schema mappings: second-order dependencies to the rescue. ACM Trans Database Syst. 2005b;30(4):994–1055.Google Scholar
  9. 9.
    Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of 21st ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. 2002. p. 233–46.Google Scholar
  10. 10.
    Madhavan J, Halevy AY. Composing mappings among data sources. In: Proceedings of 29th international conference on very large data bases. 2003. p. 572–83.Google Scholar
  11. 11.
    Maier D, Mendelzon AO, Sagiv Y. Testing implications of data dependencies. ACM Trans Database Syst. 1979;4(4):455–69.CrossRefGoogle Scholar
  12. 12.
    Nash A, Bernstein PA, Melnik S. Composition of mappings given by embedded dependencies. ACM Trans Database Syst. 2007;32(1):4.CrossRefGoogle Scholar
  13. 13.
    Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R. Translating web data. In: Proceedings of 28th international conference on very large data bases. 2002. p. 598–609.Google Scholar
  14. 14.
    Yu C, Popa L. Semantic adaptation of schema mappings when schemas evolve. In: Proceedings of 31st international conference on very large data bases. 2005. p. 1006–17.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of California-Santa CruzSanta CruzUSA