Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Image Segmentation

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_1011-2

Synonyms

Definition

The rapid rate of image analysis field has grown enormously in the past few decades. Image analysis intends to construct explicit, meaningful descriptions of physical objects in images. It can be divided into two parts: low-level image analysis and high-level image analysis. Low-level tasks focus on region-based segmentation, whereas high-level tasks are related to object-oriented representation. Image segmentation, a process of pixel classification, aims to extract or segment objects or regions from the background. Intrinsic images can be generated at the low-level processing, revealing physical properties of the imaged scene. This can often be implemented with parallel computation.

Historical Background

Image segmentation is a critical step to the success of object recognition [12], image compression [2], image visualization [7], and image retrieval [3]. Pal and Pal [13] provided a review on...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell. 1994;16(6):641–7.CrossRefGoogle Scholar
  2. 2.
    Belloulata K, Konrad J. Fractal image compression with region-based functionality. IEEE Trans Image Process. 2002;11(4):351–62.CrossRefGoogle Scholar
  3. 3.
    Chen Y, Wang JZ. A region-based fuzzy feature matching approach to content-based image retrieval. IEEE Trans Pattern Anal Mach Intell. 2002;24(9):1252–67.CrossRefGoogle Scholar
  4. 4.
    Donoho D, Johnstone I, Kerkyacharian G, Picard D. Density estimation by wavelet thresholding. Ann Statist. 1996;24:508–39.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fan J, Yau DK, Elmagarmid AK, Aref WG. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans Image Process. 2001;10(10):1454–66.CrossRefMATHGoogle Scholar
  6. 6.
    Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK. Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process. 1998;7(12):1684–99.CrossRefGoogle Scholar
  7. 7.
    Hartmann SL, Galloway RL. Depth-buffer targeting for spatially accurate 3-D visualization of medical images. IEEE Trans Med Imaging. 2000;19(10):1024–31.CrossRefGoogle Scholar
  8. 8.
    Ji L, Yan H. Attractable snakes based on the greedy algorithm for contour extraction. Pattern Recognit. 2002;35(4):791–806.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1987;1(4):321–31.CrossRefGoogle Scholar
  10. 10.
    Mehnert A, Jackway P. An improved seeded region growing algorithm. Pattern Recognit Lett. 1997;18(10):1065–71.CrossRefGoogle Scholar
  11. 11.
    Otsu N. A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pachowicz PW. Semi-autonomous evolution of object models for adaptive object recognition. IEEE Trans Syst Man Cybern. 1994;24(8):1191–207.CrossRefGoogle Scholar
  13. 13.
    Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognit. 1993;26(9):1277–94.CrossRefGoogle Scholar
  14. 14.
    Pavlidis T, Liow YT. Integrating region growing and edge detection. IEEE Trans Pattern Anal Mach Intell. 1990;12(3):225–33.CrossRefGoogle Scholar
  15. 15.
    Shih FY, Cheng S. Automatic seeded region growing for color image segmentation. Image Vis Comput. 2005;23(10):877–86.CrossRefGoogle Scholar
  16. 16.
    Shih FY, Zhang K. Efficient contour detection based on improved snake model. Pattern Recognit Artif Intell. 2004;18(2):197–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA