Skip to main content

Evolutionary Games

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining
  • 160 Accesses

Definition

Evolutionary algorithms are a family of algorithms inspired by the workings of evolution by natural selection, whose basic structure is to:

  1. 1.

    Produce an initial population of individuals, these latter being candidate solutions to the problem at hand.

  2. 2.

    Evaluate the fitness of each individual in accordance with the problem whose solution is sought.

  3. 3.

    While termination condition not met do:

    1. (a)

      Select fitter individuals for reproduction

    2. (b)

      Recombine (crossover) individuals

    3. (c)

      Mutate individuals

    4. (d)

      Evaluate fitness of modified individuals

  4. 4.

    End while

Evolutionary games is the application of evolutionary algorithms to the evolution of game-playing strategies for various games, including chess, backgammon, and Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in the 1950s, games have been part and parcel of this lively field. In 1957, a year after the Dartmouth Conference that marked the official birth of AI, Alex Bernstein designed a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Azaria Y, Sipper M (2005a) GP-Gammon: genetically programming backgammon players. Genet Program Evolvable Mach 6(3):283–300

    Article  Google Scholar 

  • Azaria Y, Sipper M (2005b) GP-Gammon: using genetic programming to evolve backgammon players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceedings of 8th European conference on genetic programming (EuroGP2005), Lausanne. LNCS, vol 3447. Springer, Heidelberg, pp 132–142

    Google Scholar 

  • Campbell MS, Marsland TA (1983) A comparison of minimax tree search algorithms. Artif Intell 20:347–367

    Article  MATH  Google Scholar 

  • Epstein SL (1999) Game playing: the next moves. In: Proceedings of the sixteenth national conference on artificial intelligence, Orland. AAAI, Menlo Park, pp 987–993

    Google Scholar 

  • Hauptman A, Sipper M (2005a) Analyzing the intelligence of a genetically programmed chess player. In: Late breaking papers at the 2005 genetic and evolutionary computation conference (GECCO 2005), Washington, DC

    Google Scholar 

  • Hauptman A, Sipper M (2005b) GP-EndChess: using genetic programming to evolve chess endgame players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceedings of 8th European conference on genetic programming (EuroGP2005), Lausanne. LNCS, vol 3447. Springer, Heidelberg, pp 120–131

    Google Scholar 

  • Hauptman A, Sipper M (2007a) Emergence of complex strategies in the evolution of chess endgame players. Adv Complex Syst 10(Suppl 1):35–59

    Article  MATH  Google Scholar 

  • Hauptman A, Sipper M (2007b) Evolution of an efficient search algorithm for the mate-in-N problem in chess. In: Ebner M, O’Neill M, Ekárt A, Vanneschi L, Esparcia-Alcázar AI (eds) Proceedings of 10th European conference on genetic programming (EuroGP2007), Valencia. LNCS, vol 4445. Springer, Heidelberg, pp 78–89

    Google Scholar 

  • Hong T-P, Huang K-Y, Lin W-Y (2001) Adversarial search by evolutionary computation. Evol Comput 9(3):371–385

    Article  Google Scholar 

  • Kaindl H (1988) Minimaxing: theory and practice. AI-Mag 9(3):69–76

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge

    MATH  Google Scholar 

  • Laird JE, van Lent M (2000) Human-level AI’s killer application: interactive computer games. In: AAAI-00: proceedings of the 17th national conference on artificial intelligence, Austin. MIT, Cambridge, pp 1171–1178

    Google Scholar 

  • Shannon CE (1950) Automatic chess player. Sci Am 48:182

    Google Scholar 

  • Shichel Y, Ziserman E, Sipper M (2005) GP-Robocode: using genetic programming to evolve robocode players. In: Keijzer M, Tettamanzi A, Collet P, van Hemert J, Tomassini M (eds) Proceedings of 8th European conference on genetic programming (EuroGP2005), Lausanne. LNCS, vol 3447. Springer, Heidelberg, pp 143–154

    Google Scholar 

  • Sipper M (2002) Machine nature: the coming age of bio-inspired computing. McGraw-Hill, New York

    Google Scholar 

  • Sipper M, Azaria Y, Hauptman A, Shichel Y (2007) Designing an evolutionary strategizing machine for game playing and beyond. IEEE Trans Syst Man Cybern Part C Appl Rev 37(4):583–593

    Article  Google Scholar 

  • Tettamanzi A, Tomassini M (2001) Soft computing: integrating evolutionary, neural, and fuzzy systems. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Sipper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Sipper, M. (2017). Evolutionary Games. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_92

Download citation

Publish with us

Policies and ethics