Encyclopedia of Machine Learning and Data Mining

2017 Edition
| Editors: Claude Sammut, Geoffrey I. Webb

Linear Regression

  • Novi QuadriantoEmail author
  • Wray L. Buntine
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7687-1_481


Linear regression is an instance of the  Regression problem which is an approach to modeling a functional relationship between input variables x and an output/response variable y. In linear regression, a linear function of the input variables is used, and more generally a linear function of some vector function of the input variables \(\boldsymbol{\phi }(x)\)

This is a preview of subscription content, log in to check access.

Recommended Reading1

  1. Bishop C (2006) Pattern recognition and machine learning. Springer, New YorkzbMATHGoogle Scholar
  2. Friedman J, Hastie T, Hölfling H, Tibshirani R (2007) Pathwise coordinate optimization. Ann Stat 1(2):302–332MathSciNetzbMATHCrossRefGoogle Scholar
  3. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, BaltimorezbMATHGoogle Scholar
  4. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge. ISBN:0-521-43108-5zbMATHGoogle Scholar
  5. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol 58:267–288MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Informatics, SMiLe CLiNiCUniversity of SussexBrightonUK
  2. 2.Statistical Machine Learning Program, NICTACanberraAustralia
  3. 3.Faculty of Information Technology, Monash UniversityClaytonAustralia