Skip to main content

K-Means Clustering

  • Reference work entry
  • First Online:
Encyclopedia of Machine Learning and Data Mining

Abstract

K-Means Clustering is a popular clustering algorithm with local optimization. In order to improve its performance, researchers have proposed methods for better initialization and faster computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  • Bei C-D, Gray RM (1985) An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans Commun 33:1132–1133

    Article  Google Scholar 

  • Beil F, Ester M, Xu X (2003) Using the triangle inequality to accelerate k-means. In: Twentieth international conference on machine learning (ICML’03), Washington, DC, pp 147–153

    Google Scholar 

  • Chen S-H, Hsieh WM (1991) Fast algorithm for VQ codebook design. In: IEE Proceedings I-Communications, Speech and Vision, 138(5):357–362

    Article  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  • Jin X, Kim S, Han J, Cao L, Yin Z (2011) A general framework for efficient clustering of large datasets based on activity detection. Stat Anal Data Min 4(1):11–29

    Article  MathSciNet  Google Scholar 

  • Kaukoranta T, Franti P, Nevalainen O (2000) A fast exact gla based code vector activity detection. IEEE Trans Image Process 9(8):1337–1342

    Article  Google Scholar 

  • Lai JZC et al (2008) A fast VQ codebook generation algorithm using codeword displacement. Pattern Recognit 41(1):315–319

    Article  MATH  Google Scholar 

  • Lloyd SP (1957) Least squares quantization in pcm. Technical report RR-5497, Bell Lab, Sept 1957

    MATH  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297

    Google Scholar 

  • Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: CVPR06, New York

    Google Scholar 

  • Pelleg D, Moore A (1999) Accelerating exact k-means algorithms with geometric reasoning. In: Proceedings of KDD’99, New York. ACM, pp 277–281

    Google Scholar 

  • Ra S-W, Kim J-K (1993) A fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE Trans Circuits Syst 40:576–579

    Article  Google Scholar 

  • Steinley D, Brusco MJ (2007) Initializing k-means batch clustering: a critical evaluation of several techniques. J Classif 24(1):99–121

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Jin, X., Han, J. (2017). K-Means Clustering. In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1_431

Download citation

Publish with us

Policies and ethics