Encyclopedia of Metagenomics

2015 Edition
| Editors: Karen E. Nelson

Extradiol Dioxygenases Retrieved from the Metagenome

Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7478-5_794


Extradiol Dioxygenases


Extradiol dioxygenases (EDOs) are mononuclear metalloenzymes that cleave the meta-position of the C–C bond of catecholic compounds, yielding yellow-pigmented open-ring products (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. Abraham WR, Nogales B, Golyshin PN, et al. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol. 2002;5:246–53.PubMedCrossRefGoogle Scholar
  2. Brennerova MV, Josefiova J, Brenner V, et al. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol. 2009;11:2216–27.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chakraborty R, Coates JD. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol. 2004;64:437–46.Google Scholar
  4. Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases. J Bacteriol. 1996;178:5930–7.PubMedCentralPubMedGoogle Scholar
  5. Fritsche W, Hofrichter M. Aerobic degradation by microorganisms. In: Rehm H-J, Reed G, editors. Biotechnology: environmental processes II, vol. 11b. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH; 2008.Google Scholar
  6. Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol. 2004;186:5189–96.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Janssen DB, Dinkla IJT, Poelarends GJ, et al. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol. 2005;7:1868–82.PubMedCrossRefGoogle Scholar
  8. Lipscomb JD. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol. 2008;18:644–9.PubMedCentralPubMedCrossRefGoogle Scholar
  9. De Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19:579–89.PubMedCrossRefGoogle Scholar
  10. Pieper DH, Seeger M. Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol. 2008;15:121–38.PubMedCrossRefGoogle Scholar
  11. Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol. 2007;9:2289–97.PubMedCrossRefGoogle Scholar
  12. Suenaga H, Mizuta S, Miyazaki K. The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome. FEMS Microbiol Ecol. 2009;69:472–80.PubMedCrossRefGoogle Scholar
  13. Suenaga H. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol. 2012;14:13–22.PubMedCrossRefGoogle Scholar
  14. Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262–9.PubMedCrossRefGoogle Scholar
  15. Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and “omics” technologies: towards understanding in situ biodegradation processes. Environ Microbiol. 2010;12:3089–104.PubMedCrossRefGoogle Scholar
  16. Widada J, Nojiri H, Omori T. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol. 2002;60:45–59.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medical Genome Sciences, Graduate School of Frontier SciencesThe University of TokyoSapporoJapan
  2. 2.Bioproduction Research Institute, National Institute of Advanced Industrial Science and TechnologySapporoJapan