Encyclopedia of Metagenomics

2015 Edition
| Editors: Sarah K. Highlander, Francisco Rodriguez-Valera, Bryan A. White

Comparative and Functional Metagenomics of Akkermansia muciniphila

  • Clara Belzer
  • W. J. van Mark Passel
  • Hauke Smidt
  • Willem M. de Vos
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7475-4_793

Definition

Akkermansia muciniphila is an important member of the intestinal microbiota that has specialized on colonizing and degrading host-derived mucin.

Introduction

Over the course of evolution, intestines of animals have been colonized with microbes. The symbioses between the host and this microbiota became essential for nutrition and immune development (Dethlefsen et al. 2007; Relman 2012). Within the gastrointestinal tract, the host genome is reinforced with the collective genetic potential (i.e., the metagenome) of the microbiota that adds up to two orders of magnitude of additional genes that comprise a broad range of functions, such as the conversion of complex carbohydrates into short-chain fatty acids (SCFAs), the detoxification of undesired compounds, and the production of various vitamins (Qin et al. 2010).

There are substantial physicochemical, biological, and architectural differences between the major sections of the intestinal tract, including the duodenum, ileum,...

This is a preview of subscription content, log in to check access.

References

  1. Belzer C, de Vos WM. Microbes inside–from diversity to function: the case of Akkermansia. ISME J. 2012;6(8):1449–58.PubMedCentralPubMedGoogle Scholar
  2. Berry D, Schwab C, Milinovich G, et al. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J. 2012;6(11):2091–106.PubMedCentralPubMedGoogle Scholar
  3. Derrien M, Vaughan EE, Plugge CM, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–76.PubMedGoogle Scholar
  4. Derrien M, Van Baarlen P, Hooiveld G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the Mucin-Degrader Akkermansia muciniphila. Front Microbiol. 2011;2:166.PubMedCentralPubMedGoogle Scholar
  5. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811–8.PubMedGoogle Scholar
  6. Dubourg G, Lagier JC, Armougom F, et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents. 2013;41(2):149–55.PubMedGoogle Scholar
  7. Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.PubMedCentralPubMedGoogle Scholar
  8. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedCentralPubMedGoogle Scholar
  9. Hansen CH, Krych L, Nielsen DS, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 2012;55(8):2285–94.PubMedGoogle Scholar
  10. Kamneva OK, Knight SJ, Liberles DA, et al. Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle. Genome Biol Evol. 2012;4(12):1375–90.PubMedCentralPubMedGoogle Scholar
  11. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012;10(5):323–35.PubMedCentralPubMedGoogle Scholar
  12. Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra141.Google Scholar
  13. Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420–8.PubMedGoogle Scholar
  14. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedCentralPubMedGoogle Scholar
  15. Rajilic-Stojanovic M, Shanahan F, Guarner F, et al. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19(3):481–8.PubMedGoogle Scholar
  16. Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70 Suppl 1:S2–9.PubMedCentralPubMedGoogle Scholar
  17. Rooijers K, Kolmeder C, Juste C, et al. An iterative workflow for mining the human intestinal metaproteome. BMC Genomics. 2011;12:6.PubMedCentralPubMedGoogle Scholar
  18. Swidsinski A, Dorffel Y, Loening-Baucke V, et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60(1):34–40.PubMedGoogle Scholar
  19. Van den Abbeele P, Van de Wiele T, Verstraete W, et al. The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiol Rev. 2011;35(4):681–704.PubMedGoogle Scholar
  20. van Passel MW, Kant R, Zoetendal EG, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE. 2011;6(3):e16876.PubMedCentralPubMedGoogle Scholar
  21. Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.PubMedGoogle Scholar
  22. Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77(18):6718–21.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Clara Belzer
    • 1
  • W. J. van Mark Passel
    • 2
  • Hauke Smidt
    • 1
  • Willem M. de Vos
    • 1
    • 3
  1. 1.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Laboratory of Systems and Synthetic BiologyWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Veterinary Biosciences, and Department of Bacteriology and ImmunologyHelsinki UniversityHelsinkiFinland