Skip to main content

Microbiome–Gut–Brain Axis

  • Reference work entry
  • First Online:
Encyclopedia of Metagenomics

Technological advances have facilitated a huge increase in our understanding of the composition and diversity of the gut microbiome, and efforts to define the influence of this virtual organ on human physiology are a burgeoning area of research. Important concepts have emerged including that of a core microbiome, distinct enterotypes, and age-related shifts in composition, which are being linked to adverse health outcomes. In tandem, a new research narrative in the field of neuroscience positions the gut microbiome as a key player in communication along the gut–brain axis. This has heralded the revised concept of the microbiome–gut–brain axis. Important research has highlighted alterations in the composition and stability of the gut microbiome in clinical populations linked to CNS-related disorders such as irritable bowel syndrome (IBS), obesity, and autism spectrum disorders. A variety of preclinical strategies have underlined the importance of the gastrointestinal microbial...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98(2):229–38.

    CAS  PubMed  Google Scholar 

  • Clarke G, Cryan JF, Dinan TG, Quigley EM. Review article: probiotics for the treatment of irritable bowel syndrome–focus on lactic acid bacteria. Aliment Pharmacol Ther. 2012a;35(4):403–13.

    CAS  PubMed  Google Scholar 

  • Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73.

    CAS  PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–42.

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.

    CAS  PubMed  Google Scholar 

  • Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23(3):187–92.

    CAS  PubMed  Google Scholar 

  • Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012;37(9):1369–78.

    CAS  PubMed  Google Scholar 

  • Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24(1):9–16.

    PubMed  Google Scholar 

  • Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.

    CAS  PubMed  Google Scholar 

  • Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol. 2011;2:94.

    PubMed Central  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    CAS  PubMed  Google Scholar 

  • Kennedy PJ, Clarke G, Quigley EM, Groeger JA, Dinan TG, Cryan JF. Gut memories: towards a cognitive neurobiology of irritable bowel syndrome. Neurosci Biobehav Rev. 2012;36(1):310–40.

    PubMed  Google Scholar 

  • Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4(137):137rv135.

    Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM, Raes J, Ehrlich D, Dore J. A metagenomic insight into our gut’s microbiome. Gut. 2013;62(1):146–58.

    PubMed  Google Scholar 

  • Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays. 2011;33(8):574–81.

    CAS  PubMed  Google Scholar 

  • Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12(8):453–66.

    CAS  PubMed  Google Scholar 

  • Mulle JG, Sharp WG, Cubells JF. The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep. 2013;15(2):337.

    PubMed Central  PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.

    CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–93.

    PubMed Central  PubMed  Google Scholar 

  • O’Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl). 2011;214(1):71–88.

    Google Scholar 

  • O’Toole PW. Changes in the intestinal microbiota from adulthood through to old age. Clin Microbiol Infect. 2012;18 Suppl 4:44–6.

    PubMed  Google Scholar 

  • Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14.

    CAS  PubMed  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med. 2006;8(20):1–27.

    PubMed  Google Scholar 

  • Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther. 2012;135(3):316–26.

    CAS  PubMed  Google Scholar 

  • Scott LV, Clarke G, Dinan TG. The brain-gut axis: a target for treating stress-related disorders. In: Halaris A, Leonard BE, editors. Inflammation in psychiatry. Basel: Switzerland; 2013. p. 28.

    Google Scholar 

  • Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    CAS  PubMed  Google Scholar 

  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–9.

    CAS  PubMed  Google Scholar 

  • Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70 Suppl 1:S38–44.

    PubMed Central  PubMed  Google Scholar 

  • Weinstock GM. Genomic approaches to studying the human microbiota. Nature. 2012;489(7415):250–6.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Cryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Clarke, G., Dinan, T., Cryan, J. (2015). Microbiome–Gut–Brain Axis. In: Highlander, S.K., Rodriguez-Valera, F., White, B.A. (eds) Encyclopedia of Metagenomics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7475-4_783

Download citation

Publish with us

Policies and ethics