Skip to main content

Rhizosphere Metagenome of Plants Adapted to Acid Mine Drainage

  • Reference work entry
  • First Online:
Encyclopedia of Metagenomics

Synonyms

Functional metagenome of acid mine drainage rhizosphere; Rhizosphere metagenome

Definition

Microbial communities associated to the roots of vascular plants are diverse and complex as a result of the nutrients released by the plants. In Tinto River, an acid mine drainage environment, the endemic heather Erica andevalensis grows at the bank of the river, and thus the microorganisms from its rhizosphere are exposed to acid pH and high concentration of toxic metals and metalloids. Functional study of the metagenome of these microorganisms has shed light on novel mechanisms of adaptation to these extreme conditions.

Introduction

The rhizosphere is the narrow zone of soil immediately surrounding the root system of vascular plants and constitutes a complex and dynamic environment where diverse microbial communities interact directly with the roots. The exudates secreted by the roots contain a diverse array of compounds that serves important roles as nutrients and chemical attractants...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15:165–71.

    CAS  PubMed  Google Scholar 

  • Banas A, Carlsson AS, Huang B, Lenman M, Banas W, Lee M, Noiriel A, Benveniste P, Schaller H, Bouvier-Navé P, Stymne S. Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian acyl-CoA:sterol acyltransferases. J Biol Chem. 2005;280:34626–34.

    CAS  PubMed  Google Scholar 

  • Chandu D, Nandi D. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res Microbiol. 2004;155:710–9.

    CAS  PubMed  Google Scholar 

  • Choi SH, Baumler DJ, Kaspar CW. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol. 2000;66:3911–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell. 2004;16:2176–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Salt DE. Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microbiol. 2005;71:8627–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R. Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol. 2003;69:4853–65.

    PubMed Central  PubMed  Google Scholar 

  • Guazzaroni E, Morgante V, Mirete S, González-Pastor JE. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Environ Microbiol. 2013;15:1088–102.

    CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:245–9.

    Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM. Principles of biochemistry. 2nd ed. New York: Worth Publishers; 1993.

    Google Scholar 

  • Lopez-Archilla AI, Marin I, Amils R. Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol. 2001;41:20–35.

    CAS  PubMed  Google Scholar 

  • Martinez A, Kolter R. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol. 1997;179:5188–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirete S, de Figueras CG, Gonzalez-Pastor JE. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol. 2007;73:6001–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–94.

    CAS  PubMed  Google Scholar 

  • Sousa FJ, Lima LM, Pacheco AB, Oliveira CL, Torriani I, Almeida DF, et al. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E. coli SOS system at acidic pH. J Mol Biol. 2006;359:1059–74.

    CAS  PubMed  Google Scholar 

  • Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G. Acid-adaptive genes of Helicobacter pylori. Infect Immun. 2003;71:5921–39.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo González-Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

González-Pastor, J.E. (2015). Rhizosphere Metagenome of Plants Adapted to Acid Mine Drainage. In: Highlander, S.K., Rodriguez-Valera, F., White, B.A. (eds) Encyclopedia of Metagenomics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7475-4_778

Download citation

Publish with us

Policies and ethics