Encyclopedia of Metagenomics

2015 Edition
| Editors: Sarah K. Highlander, Francisco Rodriguez-Valera, Bryan A. White

Colorectal Cancer-Associated Microbiota

  • Harold Tjalsma
  • Bas E. Dutilh
  • Annemarie Boleij
  • Julian R. Marchesi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7475-4_774


Alpha-bugs; Bacterial drivers; Keystone pathogens; Microbiome; Microbiota


Colonic dysbiosis: a local or disseminated change in the composition of the colonic microbiota that often leads to impaired health. Dysbiosis may either be the cause or consequence of intestinal disease.

Commensalism: a form of symbiosis where one organism benefits (the commensal) without affecting the other (the host). For example, some types of microorganisms in the lumen of the gastrointestinal tract are commensals.

COX-2 pathway: the regulatory pathway responsible for formation of important biological regulator molecules, including prostaglandins. The COX-2 enzyme is not detectable in most healthy tissues but is upregulated during inflammation and in carcinomas. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, inhibit the COX-2 pathway and decrease the risk for CRC.

Genotoxin: a compound capable of causing damage to, or genetic mutations in, DNA (synonyms: mutagenic or...

This is a preview of subscription content, log in to check access.



This work was in part supported by the Dutch Digestive Diseases Foundation (MLDS; project WO 10–53). BED and AB were supported by a Dutch Science Foundation (NWO) Veni (016•111•075) and Rubicon (825•11•031) grant, respectively.


  1. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.PubMedCentralPubMedGoogle Scholar
  2. Boleij A, Tjalsma H. Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biol Rev. 2012;87:701–30.PubMedGoogle Scholar
  3. Boleij A, van Gelder MM, Swinkels DW, Tjalsma H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis. 2011;53:870–8.PubMedGoogle Scholar
  4. Boleij A, Dutilh BE, Kortman GA, et al. Bacterial responses to a simulated colon tumor microenvironment. Mol Cel Proteomics. 2012;11:851–62.Google Scholar
  5. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.PubMedCentralPubMedGoogle Scholar
  6. Chen W, Liu F, Ling Z, et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.PubMedCentralPubMedGoogle Scholar
  7. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25.PubMedCentralPubMedGoogle Scholar
  8. Khazaie K, Zadeh M, Khan MW, et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A. 2012;109:10462–7.PubMedCentralPubMedGoogle Scholar
  9. Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.PubMedCentralPubMedGoogle Scholar
  10. Lieberman D. Clinical practice. Screening for colorectal cancer. N Engl J Med. 2009;361:1179–87.PubMedGoogle Scholar
  11. Marchesi JR, Dutilh BE, Hall N, et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6:e20447.PubMedCentralPubMedGoogle Scholar
  12. McCoy AN, Araújo-Pérez F, Azcárate-Peril A, et al. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8:e53653.PubMedCentralPubMedGoogle Scholar
  13. Newman JV, Kosaka T, Sheppard BJ, Fox JG, & Schauer DB. Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis. 2001;184(2):227–230. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11424022.
  14. Qin JJ, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–U70.PubMedCentralPubMedGoogle Scholar
  15. Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol. 2008;10:789–98.PubMedGoogle Scholar
  16. Sears CL, Pardoll DM. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis. 2011;203:306–11.PubMedCentralPubMedGoogle Scholar
  17. Shen X, Rawls J, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.PubMedCentralPubMedGoogle Scholar
  18. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6:e16393.PubMedCentralPubMedGoogle Scholar
  19. Taketo MM, Edelmann W. Mouse models of colon cancer. Gastroenterology, 2009;136(3):780–798. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19263594.
  20. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.PubMedGoogle Scholar
  21. Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, & Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect, 2006;12(8):782–786. doi:10.1111/j.1469-0691.2006.01494.x.Google Scholar
  22. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet. 1993;9:138–41.PubMedGoogle Scholar
  23. Wu SG, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17T cell responses. Nat Med. 2009;15:1016–U64.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Harold Tjalsma
    • 1
  • Bas E. Dutilh
    • 2
  • Annemarie Boleij
    • 3
  • Julian R. Marchesi
    • 4
  1. 1.Department of Laboratory Medicine, Nijmegen Institute for Infection, Inflammation and Immunity (N4i) and Research Institute for Oncology (RUCO)Radboud University Medical CentreNijmegenThe Netherlands
  2. 2.Centre for Molecular and Biomolecular Informatics (CMBI)Radboud University Medical CentreNijmegenThe Netherlands
  3. 3.Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.School of BiosciencesCardiff UniversityCardiffUK