Encyclopedia of Metagenomics

2015 Edition
| Editors: Sarah K. Highlander, Francisco Rodriguez-Valera, Bryan A. White

Cultivation-Independent Assessment of the Bacterial Diversity of Breast Milk Among Healthy Women

  • Esther Jiménez
  • Juan M. Rodríguez
Reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7475-4_566


The human milk microbiome


Microbiota: the assemblage of microorganisms present in a defined environment.

Microbiome: the totality of microorganisms and their collective genetic material present in a specific environment.


Human milk is a relevant factor in the initiation, development, and composition of the neonatal gut microbiota (Cho and Blaser 2012). This biological fluid represents a continuous source of bacteria to the infant gut (Fernández et al. 2013; Jeurink et al. 2012) and also provides prebiotic human milk oligosaccharides (Bode 2012). It has been suggested that exposure of the breast-fed infant to such a wealth of bacterial phylotypes may exert beneficial effects against diarrheal and respiratory diseases and may reduce the risk of developing other conditions, such as diabetes or obesity (Hunt et al. 2011).

The first descriptions of the bacterial diversity of breast milk in healthy women were based on the use of culture media and showed the...

This is a preview of subscription content, log in to check access.


  1. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–62.PubMedCentralPubMedGoogle Scholar
  2. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–51.PubMedGoogle Scholar
  3. Collado MC, Delgado S, Maldonado A, Rodríguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real time PCR. Lett Appl Microbiol. 2009;48:523–8.PubMedGoogle Scholar
  4. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.PubMedCentralPubMedGoogle Scholar
  5. Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, Rodríguez JM. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10.PubMedGoogle Scholar
  6. Gueimonde M, Laitinen K, Salminen S, Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation. Neonatology. 2007;92:64–6.PubMedGoogle Scholar
  7. Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.PubMedGoogle Scholar
  8. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6(6):e21313.PubMedCentralPubMedGoogle Scholar
  9. Jeurink PV, van Bergenhenegouwen J, Jiménez E, Knippels LM, Fernández L, Garssen J, Knol J, Rodríguez JM, Martín R. Human milk: a source of more life than we imagine. Benef Microbes. 2012;27:17–30.Google Scholar
  10. Jiménez E, Delgado S, Maldonado A, Arroyo R, Albújar M, García N, Jariod M, Fernández L, Gómez A, Rodríguez JM. Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 2008a;8:143.PubMedCentralPubMedGoogle Scholar
  11. Jiménez E, Fernández L, Delgado S, García N, Albújar M, Gómez A, Rodríguez JM. Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res Microbiol. 2008b;159:595–601.PubMedGoogle Scholar
  12. Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. 2013;110:1253–62.Google Scholar
  13. Martín R, Heilig HG, Zoetendal EG, Jiménez E, Fernández L, Smidt H, Rodríguez JM. Cultivation-independent assessment of the bacterial diversity of breast milk of healthy women. Res Microbiol. 2007a;158:31–7.PubMedGoogle Scholar
  14. Martín R, Heilig HG, Zoetendal EG, Smidt H, Rodríguez JM. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol. 2007b;103:2638–44.PubMedGoogle Scholar
  15. Martín R, Jiménez E, Heilig HG, Fernández L, Marín ML, Zoetendal EG, Rodríguez JM. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75(4):965–9.PubMedCentralPubMedGoogle Scholar
  16. Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, Fernández L, Rodríguez JM. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.PubMedGoogle Scholar
  17. Martín V, Mañés-Lázaro R, Rodríguez JM, Maldonado A. Streptococcus lactarius sp. nov., isolated from breast milk of healthy women. Int J Syst Evol Microbiol. 2011;61:1048–52.PubMedGoogle Scholar
  18. Pérez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin EJ, Donnet-Hughes A. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119(3):e724–32.PubMedGoogle Scholar
  19. Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: a functional capacity analysis. BMC Microbiol. 2013;13:116.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Nutrition, Food Science and Food TechnologyComplutense University of MadridMadridSpain