Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

Cyclophilin A and HIV-1 Replication

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_74-1

Definition

Cyclophilin A (CypA) is the founding member of the large cyclophilin family of proteins. It is encoded by the 5 exon PPIA gene on chromosome 7p13. CypA is a globular protein with a hydrophobic pocket that is expressed constitutively at high level. There are roughly 20 genes that encode proteins with a CypA domain, as well as many nonfunctional CypA pseudogenes. The owl monkey TRIM5-CypA fusion gene is a textbook example of how new exons are generated by LINE-1-catalyzed retrotranposition of abundant cDNAs, in this case the CypA cDNA. Orthologues of CypA are found in most species, from eubacteria through mammals. The only species that do not have orthologues are extremophile archaebacteria. The hydrophobic pocket of CypA binds to proline-containing peptides, as best exemplified by proline 90 on the external face of the HIV-1 capsid. CypA is thought to carry out a global function in protein folding by catalyzing the cis-transinterconversion of peptide bonds that contain...

Keywords

Zinc Proline Cyclosporine Dock Cyclophilin 
This is a preview of subscription content, log in to check access

References

  1. Ansari H, Greco G, Luban J. Cyclophilin A peptidyl-prolyl isomerase activity promotes ZPR1 nuclear export. Mol Cell Biol. 2002;22:6993–7003.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Berthoux L, Sebastian S, Sokolskaja E, Luban J. Cyclophilin a is required for TRIM5{alpha}-mediated resistance to HIV-1 in old world monkey cells. Proc Natl Acad Sci U S A. 2005;102:14849–53.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc Natl Acad Sci U S A. 2002;99:5247–52.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Braaten D, Luban J. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J. 2001;20:1300–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Braaten D, Aberham C, Franke EK, Yin L, Phares W, Luban J. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J Virol. 1996a;70:3551–60.PubMedPubMedCentralGoogle Scholar
  6. Braaten D, Aberham C, Franke EK, Yin L, Phares W, Luban J. Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that gag encodes the functional target of cyclophilin A. J Virol. 1996b;70:5170–6.PubMedPubMedCentralGoogle Scholar
  7. Colgan J, Yuan HE, Franke EK, Luban J. Binding of the human immunodeficiency virus type 1 gag polyprotein to cyclophilin A is mediated by the central region of capsid and requires gag dimerization. J Virol. 1996;70:4299–310.PubMedPubMedCentralGoogle Scholar
  8. Colgan J, Asmal M, Neagu M, Yu B, Schneidkraut J, Lee Y, Sokolskaja E, Andreotti A, Luban J. Cyclophilin A regulates TCR signal strength in CD4+ T cells via a proline-directed conformational switch in Itk. Immunity. 2004;21:189–201.PubMedCrossRefGoogle Scholar
  9. Colgan J, Asmal M, Yu B, Luban J. Cyclophilin A-deficient mice are resistant to immunosuppression by cyclosporine. J Immunol. 2005;174:6030–8.PubMedCrossRefGoogle Scholar
  10. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature. 1989;337:476–8.PubMedCrossRefGoogle Scholar
  11. Flisiak R, Horban A, Gallay P, Bobardt M, Selvarajah S, Wiercinska-Drapalo A, Siwak E, Cielniak I, Higersberger J, Kierkus J, et al. The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology. 2008;47:817–26.PubMedCrossRefGoogle Scholar
  12. Franke EK, Yuan HE, Luban J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994;372:359–62.PubMedCrossRefGoogle Scholar
  13. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996;87:1285–94.PubMedCrossRefGoogle Scholar
  14. Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR, Katzourakis A, Stoye JP, Taylor IA. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe. 2010;8:248–59.PubMedCrossRefGoogle Scholar
  15. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984;226:544–7.PubMedCrossRefGoogle Scholar
  16. Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol. 2005;79:176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991;66:807–15.PubMedCrossRefGoogle Scholar
  18. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human immunodeficiency virus type 1 gag protein binds to cyclophilins A and B. Cell. 1993;73:1067–78.PubMedCrossRefGoogle Scholar
  19. Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature. 2010;467(7312):214–217. doi:10.1038/nature09337.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ott DE, Coren LV, Johnson DG, Sowder RC, Arthur LO, Henderson LE. Analysis and localization of cyclophilin A found in the virions of human immunodeficiency virus type 1 MN strain. AIDS Res Hum Retroviruses. 1995;11:1003–6.PubMedCrossRefGoogle Scholar
  21. Sayah DM, Sokolskaja E, Berthoux L, Luban J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature. 2004;430:569–73.PubMedCrossRefGoogle Scholar
  22. Sokolskaja E, Sayah DM, Luban J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol. 2004;78:12800–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Song C, Aiken C. Analysis of human cell heterokaryons demonstrates that target cell restriction of cyclosporine-resistant human immunodeficiency virus type 1 mutants is genetically dominant. J Virol. 2007;81:11946–56.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature. 2004;427:848–53.PubMedCrossRefGoogle Scholar
  25. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Göttlinger HG. Functional association of cyclophilin A with HIV-1 virions. Nature. 1994;372:363–5.PubMedCrossRefGoogle Scholar
  26. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med. 2003;9(9):1138–1143. doi:10.1038/nm910.PubMedCrossRefGoogle Scholar
  27. Yin L, Braaten D, Luban J. Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels. J Virol. 1998;72:6430–6.PubMedPubMedCentralGoogle Scholar
  28. Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med. 2007;204:1741–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Program in Molecular Medicine, Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterUSA