Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson


Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_65-1


Budding is the process of lipid envelopment of viral particles by the cell membrane during exit from infected cells, a strategy that allows the virus to bypass the need for cell lysis to release newly formed virions and spread infection. As HIV-1 assembly progresses at the plasma membrane, viral capsids form on the inner leaflet of the cell surface and become gradually surrounded by the plasma membrane. In late steps of budding, the fully assembled immature capsids are completely surrounded by the membrane but remain connected to the cell by a membranous stalk. The ultimate separation of nascent virions from their progenitor cells involves host proteins of the endosomal sorting complex required for transport (ESCRT) pathway, a cell membrane fission machinery that will place the final cut and release the newly made virions.


HIV-1 budding requires nascent virions to traverse the plasma membrane and acquire their envelope, a process that begins with the enfoldment...


Equine Infectious Anemia Virus Rous Sarcoma Virus Membrane Fission PTAP Motif CHMP Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baietti MF, Zhang Z, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85.CrossRefPubMedGoogle Scholar
  2. Baumgartel V, Ivanchenko S, et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol. 2011;13(4):469–74.CrossRefPubMedGoogle Scholar
  3. Caballe A, Martin-Serrano J. ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic. 2011;12(10):1318–26.CrossRefPubMedGoogle Scholar
  4. Carter CA. Tsg101: HIV-1’s ticket to ride. Trends Microbiol. 2002;10(5):203–5.CrossRefPubMedGoogle Scholar
  5. Cashikar et al. eLIFe. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24878737.
  6. Dussupt V, Javid MP, et al. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 2009;5(3):e1000339.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fabrikant G, Lata S, et al. Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol. 2009;5(11):e1000575.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Freed. Nat Rev Microbiol. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26119571.
  9. Gottlinger HG, Dorfman T, et al. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A. 1991;88(8):3195–9.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Guizetti J, Gerlich DW. ESCRT-III polymers in membrane neck constriction. Trends Cell Biol. 2012;22(3):133–40.CrossRefPubMedGoogle Scholar
  11. Henne WM, Buchkovich NJ, et al. The ESCRT pathway. Dev Cell. 2011;21(1):77–91.CrossRefPubMedGoogle Scholar
  12. Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol. 2010;11(8):556–66.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Jouvenet N, Zhadina M, et al. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol. 2011;13(4):394–401.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Kikonyogo et al. PNAS. 2001. http://www.ncbi.nlm.nih.gov/pubmed/11562473.
  15. Lee et al. PLoS Pathog. 2012. http://www.ncbi.nlm.nih.gov/pubmed/22969426.
  16. Rusten TE, Stenmark H. How do ESCRT proteins control autophagy? J Cell Sci. 2009;122(Pt 13):2179–83.CrossRefPubMedGoogle Scholar
  17. Sette P, Mu R, et al. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure. 2011;19:1485–95.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Sette et al. Retrovirology. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23895345.
  19. Shields SB, Piper RC. How ubiquitin functions with ESCRTs. Traffic. 2011;12(10):1306–17.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Strack B, Calistri A, et al. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003;114(6):689–99.CrossRefPubMedGoogle Scholar
  21. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012;2(7):a006924.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Vietri et al. Nature. 2015. http://www.ncbi.nlm.nih.gov/pubmed/26040712.
  23. Votteler and Sundquist. Cell Host Microbe. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24034610.
  24. Zhai et al. Nat Struct Mol Biol. 2007. http://www.ncbi.nlm.nih.gov/pubmed/18066081.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Molecular MicrobiologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA