Encyclopedia of AIDS

Living Edition
| Editors: Thomas J. Hope, Douglas Richman, Mario Stevenson

MX2 and HIV-1 Restriction

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9610-6_396-1


The human myxovirus resistance 2 protein (MX2, also named MxB) belongs to the dynamin superfamily of high molecular weight guanosine triphosphatases (GTPases). MX2 is homologous to human MX1 (or MxA) and mouse Mx1 and Mx2 proteins. The Mx genes are inducible by type 1 and type 3 interferons (IFNs). Human MX1 has been long recognized as a potent antiviral factor, capable of preventing replication by numerous RNA viruses, including influenza A and measles viruses, and DNA viruses, such as hepatitis B virus. Human MX2 was recently shown to possess a strong antiviral activity against HIV-1 and other primate lentiviruses. MX2 participates in the type 1 interferon-induced block to HIV-1 infection and acts after reverse transcription, at the level of viral DNA nuclear import and/or integration into the host cell genome.


Detection of viruses and other microbes by cellular sensors in infected cells induces the production of type 1 and type 3 interferons (IFNs). These...


Antiviral Activity Feline Immunodeficiency Virus Equine Infectious Anemia Virus Capsid Mutant Antiviral Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Asmuth DM, Murphy RL, Rosenkranz SL, Lertora JJ, Kottilil S, Cramer Y, Chan ES, Schooley RT, Rinaldo CR, Thielman N, Li XD, Wahl SM, Shore J, Janik J, Lempicki RA, Simpson Y, Pollard RB. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial. J Infect Dis. 2010;201(11):1686–96.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Azzoni L, Foulkes AS, Papasavvas E, Mexas AM, Lynn KM, Mounzer K, Tebas P, Jacobson JM, Frank I, Busch MP, Deeks SG, Carrington M, O’Doherty U, Kostman J, Montaner LJ. Pegylated interferon alfa-2a monotherapy results in suppression of HIV type 1 replication and decreased cell-associated HIV DNA integration. J Infect Dis. 2013;207(2):213–22.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bishop KN, Mortuza GB, Howell S, Yap MW, Stoye JP, Taylor IA. Characterization of an amino-terminal dimerization domain from retroviral restriction factor Fv1. J Virol. 2006;80(16):8225–35.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Buffone C, Schulte B, Opp S, Diaz-Griffero F. Contribution of MxB oligomerization to HIV-1 capsid binding and restriction. J Virol. 2015;89:3285–94.CrossRefPubMedGoogle Scholar
  5. Busnadiego I, Kane M, Rihn SJ, Preugschas HF, Hughes J, Blanco-Melo D, Strouvelle VP, Zang TM, Willett BJ, Boutell C, Bieniasz PD, Wilson SJ. Host and viral determinants of Mx2 antiretroviral activity. J Virol. 2014;88(14):7738–52.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Cheney KM, McKnight A. Interferon-alpha mediates restriction of human immunodeficiency virus type-1 replication in primary human macrophages at an early stage of replication. PLoS One. 2010;5(10):e13521.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, Pellegrino P, Williams I, Cohen MS, Gao F, Shaw GM, Hahn BH, Ochsenbauer C, Kappes JC, Borrow P. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology. 2013;10:146.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Fribourgh JL, Nguyen HC, Matreyek KA, Alvarez FJ, Summers BJ, Dewdney TG, Aiken C, Zhang P, Engelman A, Xiong Y. Structural Insight into HIV-1 Restriction by MxB. Cell Host Microbe. 2014;16:627–38.CrossRefPubMedGoogle Scholar
  9. Fricke T, White TE, Schulte B, de Souza Aranha Vieira DA, Dharan A, Campbell EM, Brandariz-Nunez A, Diaz-Griffero F. MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology. 2014;11(1):68.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O, Kochs G, Daumke O. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature. 2010;465(7297):502–6.CrossRefPubMedGoogle Scholar
  11. Gao S, von der Malsburg A, Dick A, Faelber K, Schroder GF, Haller O, Kochs G, Daumke O. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity. 2011;35(4):514–25.CrossRefPubMedGoogle Scholar
  12. Goujon C, Malim MH. Characterization of the alpha interferon-induced postentry block to HIV-1 infection in primary human macrophages and T cells. J Virol. 2010;84(18):9254–66.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC, Schaller T, Hue S, Barclay WS, Schulz R, Malim MH. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 2013;502(7472):559–62.CrossRefPubMedGoogle Scholar
  14. Goujon C, Moncorge O, Bauby H, Doyle T, Barclay WS, Malim MH. Transfer of the amino-terminal nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor. J Virol. 2014;88(16):9017–26.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Goujon C, Greenbury RA, Papaioannou S, Doyle T, Malim MH. A triple arginine motif in the amino-terminal domain and oligomerization are required for HIV-1 inhibition by human MX2. J Virol. 2015;89:4676–80.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 2015;23:154–63.CrossRefPubMedGoogle Scholar
  17. Ho DD, Hartshorn KL, Rota TR, Andrews CA, Kaplan JC, Schooley RT, Hirsch MS. Recombinant human interferon alfa-A suppresses HTLV-III replication in vitro. Lancet. 1985;1(8429):602–4.CrossRefPubMedGoogle Scholar
  18. Horisberger MA, Staeheli P, Haller O. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. Proc Natl Acad Sci U S A. 1983;80(7):1910–4.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 2013;502(7472):563–6.PubMedCentralCrossRefPubMedGoogle Scholar
  20. King MC, Raposo G, Lemmon MA. Inhibition of nuclear import and cell-cycle progression by mutated forms of the dynamin-like GTPase MxB. Proc Natl Acad Sci U S A. 2004;101(24):8957–62.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Kochs G, Haener M, Aebi U, Haller O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J Biol Chem. 2002;277(16):14172–6.CrossRefPubMedGoogle Scholar
  22. Lindenmann J. Resistance of mouse to mice adapted influenza A virus. Virology. 1962;16:203–4.CrossRefPubMedGoogle Scholar
  23. Liu Z, Pan Q, Ding S, Qian J, Xu F, Zhou J, Cen S, Guo F, Liang C. The Interferon-Inducible MxB Protein Inhibits HIV-1 Infection. Cell Host Microbe. 2013;14(4):398–410.CrossRefPubMedGoogle Scholar
  24. Liu Z, Pan Q, Liang Z, Qiao W, Cen S, Liang C. The highly polymorphic cyclophilin A-binding loop in HIV-1 capsid modulates viral resistance to MxB. Retrovirology. 2015;12(1):1.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Matreyek KA, Wang W, Serrao E, Singh P, Levin HL, Engelman A. Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology. 2014;11(1):90.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Melen K, Julkunen I. Nuclear cotransport mechanism of cytoplasmic human MxB protein. J Biol Chem. 1997;272(51):32353–9.CrossRefPubMedGoogle Scholar
  27. Melen K, Keskinen P, Ronni T, Sareneva T, Lounatmaa K, Julkunen I. Human MxB protein, an interferon-alpha-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochromatin region beneath the nuclear envelope. J Biol Chem. 1996;271(38):23478–86.CrossRefPubMedGoogle Scholar
  28. Mitchell PS, Patzina C, Emerman M, Haller O, Malik HS, Kochs G. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe. 2012;12(4):598–604.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Neumann A, Polis M, Rozenberg L, Jackson J, Reitano K, McLaughlin M, Koratich C, Dewar R, Masur H, Haagmans B, Kottilil S. Differential antiviral effect of PEG-interferon-alpha-2b on HIV and HCV in the treatment of HIV/HCV co-infected patients. AIDS. 2007;21(14):1855–65.CrossRefPubMedGoogle Scholar
  30. Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, Hora B, Berg A, Cai F, Hopper J, Denny TN, Ding H, Ochsenbauer C, Kappes JC, Galimidi RP, West Jr AP, Bjorkman PJ, Wilen CB, Doms RW, O'Brien M, Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn BH. Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci U S A. 2013;110(17):6626–33.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Patzina C, Haller O, Kochs G. Structural requirements for the antiviral activity of the human MxA protein against Thogoto and influenza A virus. J Biol Chem. 2014;289(9):6020–7.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Pitossi F, Blank A, Schroder A, Schwarz A, Hussi P, Schwemmle M, Pavlovic J, Staeheli P. A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol. 1993;67(11):6726–32.PubMedCentralPubMedGoogle Scholar
  33. Ponten A, Sick C, Weeber M, Haller O, Kochs G. Dominant-negative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity. J Virol. 1997;71(4):2591–9.PubMedCentralPubMedGoogle Scholar
  34. Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete GQ, Hill BJ, Timmer JK, Reiss E, Yarden G, Darko S, Contijoch E, Todd JP, Silvestri G, Nason M, Norgren Jr RB, Keele BF, Rao S, Langer JA, Lifson JD, Schreiber G, Douek DC. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014;511(7511):601–5.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Sironi M, Biasin M, Cagliani R, Gnudi F, Saulle I, Ibba S, Filippi G, Yahyaei S, Tresoldi C, Riva S, Trabattoni D, De Gioia L, Lo Caputo S, Mazzotta F, Forni D, Pontremoli C, Pineda JA, Pozzoli U, Rivero-Juarez A, Caruz A, Clerici M. Evolutionary analysis identifies an MX2 haplotype associated with natural resistance to HIV-1 infection. Mol Biol Evol. 2014;31(9):2402–14.CrossRefPubMedGoogle Scholar
  36. Stein DR, Shaw SY, McKinnon LR, Abou M, McCorrister SJ, Westmacott GR, Fowke KR, Plummer FA, Ball TB. Mx2 expression is associated with reduced susceptibility to HIV infection in highly exposed HIV seronegative Kenyan sex workers. AIDS. 2015;29(1):35–41.CrossRefPubMedGoogle Scholar
  37. Yu Z, Wang Z, Chen J, Li H, Lin Z, Zhang F, Zhou Y, Hou J. GTPase activity is not essential for the interferon-inducible MxA protein to inhibit the replication of hepatitis B virus. Arch Virol. 2008;153(9):1677–84.CrossRefPubMedGoogle Scholar
  38. Zhou D, Mei Q, Li J, He H. Cyclophilin A and viral infections. Biochem Biophys Res Commun. 2012;424(4):647–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre d’études d’agents pathogènes et biotechnologies pour la santéCNRS FRE3689 – UMMontpellierFrance