Skip to main content

APOBEC3F/G and Vif: Action and Counteractions

Definition

The primary targets of HIV-1 (T lymphocytes, macrophages, and monocytes) are able to limit HIV-1 replication by expressing the restriction factors APOBEC3F and APOBEC3G (A3F/G). These two proteins have cytidine deaminase activity and induce mutations during reverse transcription of the genomic RNA that could be lethal for the virus. A3F/G also interfere with the reverse transcription and integration processes independently from this deaminase activity. To counteract this restriction, HIV-1 has evolved the viral infectivity factor (Vif), a multifunctional protein that is able to reduce the cellular A3F/G expression level through two major mechanisms: (1) Vif induces degradation of A3F/G by the proteasome by recruiting an E3 ubiquitin ligase complex, and (2) Vif inhibits A3F/G translation by interacting with the 5′ untranslated region (UTR) of their mRNAs. These two mechanisms ultimately reduce the packaging of A3F/G into virions. The intimate relationship between Vif and...

Keywords

  • Zinc Finger Motif
  • Equine Infectious Anemia Virus
  • Ubiquitin Ligase Complex
  • APOBEC3 Protein
  • Reverse Transcription Complex

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

References

  • Alce TM, Popik W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J Biol Chem. 2004;279:34083–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ara A, Love RP, Chelico L. Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms. PLoS Pathog. 2014;10:e1004024.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Batisse J, Guerrero SX, Bernacchi S, Richert L, Godet J, Goldschmidt V, Mély Y, Marquet R, de Rocquigny H, Paillart J-C. APOBEC3G impairs the multimerization of the HIV-1 Vif protein in living cells. J Virol. 2013;87:6492–506.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Britan-Rosich E, Nowarski R, Kotler M. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. J Mol Biol. 2011;410:1065–76.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Casartelli N, Guivel-Benhassine F, Bouziat R, Brandler S, Schwartz O, Moris A. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. J Exp Med. 2010;207:39–49.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Cen S, Peng ZG, Li XY, Li ZR, Ma J, Wang YM, Fan B, You XF, Wang YP, Liu F, et al. Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. J Biol Chem. 2010;285:16546–52.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Y, Love RP, Chelico L. HIV-1 viral infectivity factor (Vif) alters processive single-stranded DNA scanning of the retroviral restriction factor APOBEC3G. J Biol Chem. 2013;288:6083–94.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng Y, Baig TT, Love RP, Chelico L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front Microbiol. 2014;5:450.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Gillick K, Pollpeter D, Phalora P, Kim E-Y, Wolinsky SM, Malim MH. Suppression of HIV-1 infection by APOBEC3 proteins in primary human CD4+ T cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J Virol. 2013;87:1508–17.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo Y, Dong L, Qiu X, Wang Y, Zhang B, Liu H, Yu Y, Zang Y, Yang M, Huang Z. Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif. Nature. 2014;505:229–33.

    CrossRef  CAS  PubMed  Google Scholar 

  • Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH. DNA deamination mediates innate immunity to retroviral infection. Cell. 2003;113:803–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Huthoff H, Autore F, Gallois-Montbrun S, Fraternali F, Malim MH. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog. 2009;5:e1000330.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Iwatani Y, Chan DS, Liu L, Yoshii H, Shibata J, Yamamoto N, Levin JG, Gronenborn AM, Sugiura W. HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc Natl Acad Sci U S A. 2009;106:19539–44.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Shandilya SMD, Carpenter MA, Rathore A, Brown WL, Perkins AL, Harki DA, Solberg J, Hook DJ, Pandey KK, et al. First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. ACS Chem Biol. 2012;7:506–17.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol. 2007;81:7238–48.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 2003;114:21–31.

    CrossRef  CAS  PubMed  Google Scholar 

  • Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med. 2003;9:1398–403.

    CrossRef  CAS  PubMed  Google Scholar 

  • Matsui M, Shindo K, Izumi T, Io K, Shinohara M, Komano J, Kobayashi M, Kadowaki N, Harris RS, Takaori-Kondo A. Small molecules that inhibit Vif-induced degradation of APOBEC3G. Virol J. 2014;11:122.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Mercenne G, Bernacchi S, Richer D, Bec G, Henriet S, Paillart JC, Marquet R. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation. Nucleic Acids Res. 2010;38:633–46.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JH, Presnyak V, Smith HC. The dimerization domain of HIV-1 viral infectivity factor Vif is required to block virion incorporation of APOBEC3G. Retrovirology. 2007;4:81.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM. Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol. 2008;26:1187–92.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Opi S, Kao S, Goila-Gaur R, Khan MA, Miyagi E, Takeuchi H, Strebel K. Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant. J Virol. 2007;81:8236–46.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Salter JD, Morales GA, Smith HC. Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci. 2014;39:373–80.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 2002;418:646–50.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med. 2003;9:1404–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sleiman D, Bernacchi S, Xavier Guerrero S, Brachet F, Larue V, Paillart J-C, Tisne C. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail. RNA Biol. 2014;11:906–20.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Stopak K, de Noronha C, Yonemoto W, Greene WC. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell. 2003;12:591–601.

    CrossRef  CAS  PubMed  Google Scholar 

  • Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA. The HIV “A” (sor) gene product is essential for virus infectivity. Nature. 1987;328:728–30.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang X, Ao Z, Chen L, Kobinger G, Peng J, Yao X. The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J Virol. 2012;86:3777–86.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  • Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006;2:e41.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  • Xiao Z, Ehrlich E, Luo K, Xiong Y, Yu X-F. Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G. FASEB J. 2007;21:217–22.

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu H, Chertova E, Chen J, Ott DE, Roser JD, Hu WS, Pathak VK. Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology. 2007;360:247–56.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zuo T, Liu D, Lv W, Wang X, Wang J, Lv M, Huang W, Wu J, Zhang H, Jin H, et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by targeting the interaction between Vif and ElonginC. J Virol. 2012;86:5497–507.

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Paillart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Libre, C., Batisse, J., Guerrero, S., Marquet, R., Paillart, JC. (2015). APOBEC3F/G and Vif: Action and Counteractions. In: Hope, T., Stevenson, M., Richman, D. (eds) Encyclopedia of AIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9610-6_376-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9610-6_376-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9610-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine